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ABSTRACT
REST API testing is a field whose popularity has increased in the
aftermath of the de facto standardization of the REST architectural
principles in many areas of the World Wide Web. This paper offers
a comprehensive survey of available tools for testing RESTful APIs.
The survey covers 32 papers in the field, including approaches
for black- and white-box testing, extensions that address current
challenges, empirical analyses of published strategies, and industrial
applications. We outline the most imposing challenges currently
facing the field and highlight potential research opportunities for
future work to tackle.

1 INTRODUCTION
With the tremendous increase in popularity of component-centric
architectural styles such as microservices, exposing modules’ func-
tionality through a systematic Application Programming Interface
(API) has become a standard practice of paramount importance
due to the indispensible requirement of inter-service web-based
communication. The Representational State Transfer (REST) [18]
architectural pattern has emerged as the cornerstone of API design
thanks to its effective decoupling of the underlying application’s
state and the API’s exposed interface. Because of their ubiquity
and positioning as the application’s entry point, REST APIs require
substantial testing. Effectively verifying the functionality of the
communication layer of services is an essential step in the over-
arching system’s quality assurance process. However, API testing
poses a number of challenges that make manual testing challenging,
complex, and time-consuming for developers [9, 28, 29]. Because
of the laborious nature of generating API test cases, researchers
have been exploring ways to of automating this task using different
approaches.

REST API testing poses nuanced challenges that intertwinemany
complex attributes of the system, from the underlying state, to the
structure of the exposed interface, and to the available information.
The need for automated ways to reason about and provide solutions
to these problems has led to emergence of an active and developing
research field into various ways of generating meaningful test cases
for such systems. In a broad sense, the work carried out in this field
has concentrated around two epicentric paradigms. Black-box (BB)
testing treats the API as an opaque process, assuming no access to
the source code of the system and leveraging the API as a simple
mapping between input and output. White-box (WB) testing, by
contrast, requires access to the system’s source code and exploits its
structure to develop more informed test case generation strategies.

This paper surveys the research conducted in the domain of REST
API testing, seeking to provide a comprehensive description of the
landscape of this field. We compile a broad list of testing approaches
and applications, dividing the conceptually into three categories:
black-box methods, white-box methods, and empirical applications.

Figure 1: Cumulative distribution of REST API testing publi-
cation between 2009 and 2022.

The distribution of publications over time is displayed in Figure 1.
In total, we surveyed 43 papers related to automated REST API
test case generation. We provide a more detailed breakdown of the
distribution in Section 3.2

We are only aware of one other survey regarding the testing
of RESTful APIs, carried out in Ehsan et al. [16]. In their work,
the authors focus on extrapolating the main challenges that the
REST API testing faces, as well as providing a high-level view of
the approaches present in literature, based on only 16 publications.
This paper seeks to provide not only a more comprehensive view of
the landscape, but also a detailed description of how state-of-the-art
tools address concrete challenges in practice. In summary, the main
contributions of this paper are the following:

(1) The paper provides a comprehensive introduction to the
task of RESTful API testing, accompanied by unifying defini-
tions that seek to provide common context to the numerous
approaches in literature.

(2) The paper provides a detailed survey 33 REST API test-
ing papers split between black-box approaches, white-box
approaches, and applications.

(3) The paper extrapolates current challenges to open problems
and identifies possible avenues of future research.

The remainder of the paper is structured as follows. Section 2
provides the necessary background information, definitions, and
terminology, that are required to understand existing literature.
Sections 4 and 5 provide overviews of techniques following the
black-box and white-box testing paradigms, respectively. Section 6
presents the available empirical analyses an comparisons of avail-
able tools. Finally, section 7 outlines current challenges and oppor-
tunities within the field, and Section 8 concludes the paper.



2 BACKGROUND
This section reviews the common terminology used in the field and
provides accompanying examples to help build intuition for readers
unfamiliar with the field.

RESTful API. AnyWebAPI (or service) that conforms to the REST
architectural style rules proposed by Fielding [18]. The cornerstone
of RESTful API functionality resides in their ability to provide a
stateless, uniform interface that allows for the creation, reading,
update, or deletion (CRUD) of a resource.

Resources. The primary abstraction of REST for data representa-
tion is the resource. In general, a resource can be any data handled
by the API, such as strings, documents, and images. Such data can
be manipulated through the usage of CRUD operations, which in
practice usually map to HTTP requests. Resources are mapped to
their corresponding Unique Resource Identifiers (URIs).

HTTP Requests. The Hypertext Transfer Protocol is the corner-
stone protocol of the Web and defines a standardized set of rules
for transferring data over a network. Communication over HTTP
is carried out in terms of messages. Messages can either be requests
(from a client to a server) or responses (from the server back to
the client) that correspond to previous requests. Requests are com-
posed of the following elements: a path specifying the location of
the resource to action, a method that defines the type of operation
to perform on the resource, a header that carries information about
the request, and an optional body which carries the payload of the
message.

HTTP Methods. A total of 9 HTTP methods (also called verbs or
actions) exist, but we mainly focus on 4 essential methods that best
correspond to the CRUD paradigm. GET requests the retrieval of
a specific resource without any modification. POST requests that
a new resource be created from the message’s data. PUT requests
the update of an existing resource by replacing its attributes with
the data included in the payload. DELETE requests that an existing
method be deleted.

OpenAPI Specification. An OpenAPI Specification (OAS), also
referred to as a Swagger Specification in literature (due to a recent
name change), is a document that describes the schema of an API
in terms of the capabilities and constraints of the service1. Almost
all available tools use such a schema to extract information about
the API under test. An excerpt of such a schema in JSON format is
provided in Figure 2. This is an adapted version of the specification
of Swagger’s pet store API2. Most information included in OAS
documents consists of formal descriptions of the structure of the
API, such supported paths (line 2) and methods (line 3), details
about parameters (lines 9-15), and possible responses (lines 16-18).
Natural language information is also given in terms of summaries
and descriptions (lines 4 and 5), that describes informal properties,
semantics, and relations between parameters.

RESTful API Test Cases. A RESTful API test cases is an ordered
sequence of fully-specified HTTP requests. A test case is valid if
all of its requests abide by the OAS. The test case succeeds if all of

1https://spec.openapis.org/oas/latest.html
2https://petstore.swagger.io/v2/swagger.json

1 "paths": {
2 "/pet/{petId}/image": {
3 "post": {
4 "summary": "uploads an image",
5 "description": "",
6 "operationId": "uploadFile",
7 "consumes": ["multipart/form -data" ],
8 "produces": ["application/json"],
9 parameters": [{
10 "name": "petId",
11 "in": "path",
12 "description": "ID of pet to update",
13 "required": true,
14 "type": "integer",
15 "format": "int64"}],
16 "responses": {
17 "200": { "description": "Success" },
18 "404": { "description": "Not found" } }
19 ...

Figure 2: Sample OAS schema excerpt for a Pet Store API.

1 POST /pet {}
2 POST /pet/1/image {img:img.png}
3 PATCH /pet/1/image {img:new_img.png}
4 GET /pet/1/image {}

Figure 3: Pseudocode of a sequence of HTTP requests com-
prising a REST API test case for a Pet Store API.

its requests receive responses that align with the OAS in terms of
response code and payload - otherwise the test fails. An example
test case is given in Figure 3. In this example, the first request
(line 1) creates a Pet resource with an id of 1 via a POST requst,
before uploading its corresponding image (line 2) and subsequently
modifying it (line 3) through a PUT request.

3 PUBLICATION SELECTION STRATEGY
This section reviews the scope of the survey, explains the paper
collection and selection procedures, and provides an analysis of the
surveyed papers.

3.1 Paper Collection Strategy
To identify relevant publications in the field, we first surveyed rel-
evant conferences 3 and journals from the last 7 years. We also
queried large scientific database search engines including Google
Scholar, IEEE Xplore, and arXiv for combinations of keywords cre-
ated by combining the tuples ⟨REST API, RESTful API, REST⟩ and
⟨testing, test case generation, software testing⟩ based on
common keywords identified in previously discovered papers. We
additionally used Google Scholar for the purpose of forward snow-
balling and consulted Related Work sections and bibliographies of
selected publications.
3ICSE, ESEC/FSE, CCS, ISSTA, ICST, AST, EDOC, ICIT, and ICCSDET



A Survey of Test Case Generation Strategies for RESTful APIs

Figure 4: Distribution of surveyed work by the domain it
adheres to.

We define our inclusion criteria in terms of four requirements
with regard to the contributions of the paper. We include a paper
in this survey if at least one of the following conditions is met:

(1) The paper introduces a novel approach or proposes an en-
hancement for an existing tool that generates RESTful API
test cases.

(2) The paper compares existing RESTful API test case genera-
tion approaches either conceptually or empirically.

(3) The paper applies a tool from a previous publication to
a real-life problem and reports meaningful results with
practical implications.

3.2 Paper Distribution
To provide a better understanding of the research landscape, we
provide a visual representation of the distribution of papers in Fig-
ure 4, classifying research by the categories that shape the structure
of this survey. This categorisation shows that just over half of the
work (53.3%) has focused on black-box approaches, with the vast
majority of this work (48.8% of all papers) relying on the OAS alone
as the guiding input for test case generation. Just over 23% of papers
focused on white-box testing of REST APIs, which entirely consists
of EvoMaster and evolutionary algorithms within this framework.
An equal proportion of papers are analyses, empirical studies, or
industry application reports. This distribution highlights the pop-
ularity of black-box approaches, which we attribute to their high
degree of flexibility and lack of strict requirements imposed on the
underlying software.

4 BLACK-BOX REST API TESTING
The black-box testing paradigm has been the focal point of the
majority of RESTful API test case generation research, thanks to its
flexibility and weak assumptions about the system under test (SUT).
We conceptually identify two main categories of tools following
this paradigm: specification-based approaches and model-based
approaches. The former heavily rely on the OAS to provide derive
the structure of REST API, while model-based tools additionally
leverage more sophisticated, fine-grained models that convey more
information than the OAS. The latter approach is the less common
of the two, due to the strict requirements that a formal model
imposes on the system and the development process.

4.1 Specification-based approaches
Chakrabarti and Kumar [10] propose one of the early attempts at
automating the testing process of REST APIs. Their tool, called
Test-the-REST introduces a uniform test-specification language
based on XML, that automates the tasks of validating and running
the test cases, agnostic to the underlying API’s implementation.
This approach is shown to be applicable to both manually written
and automatically generated test cases, although the authors do not
mention the underlying approach used for automated generation.
Despite it only covering part of the testing pipeline, the authors
show that there are significant productivity benefits to this task to
warrant involved algorithms tailored to REST APIs.

Ed-douibi et al. [15] propose a technique that extracts system-
specific representations from an overarchingOASmetamodel, which
enables the automated generation and reusability of test cases and
input data. Their pipeline follows four steps: first, the API’s spec-
ification is parsed, extracting a model that defines input-output
behavior. This model is then enriched by embedding inferred pa-
rameters that guide the data generation process. Individual test case
models emerge from the previous step, which are finally instanti-
ated and converted into executable code. The generation process
aims to trigger both nominal and faulty execution traces in the SUT,
with tailored sampling processes for either scenario. The analysis
of the schema offers a crucial advantage in that default and example
values found in the specification are effective samples for required
input data. Further, the output of some actions can be reused as in-
put for others, providing an additional channel of information. Later
work formalizes this latter technique and shows that dependency
analysis between commands is an effective sampling mechanism
for input data [8, 20].

Segura et al. [43] adapt the framework of metamorphic testing
to RESTful APIs by defining an abstraction hierarchy based on
metamorphic relation output patterns (MROPs). In general, meta-
morphic testing provides a foundation for testing programs whose
output may be difficult to determine. Metamorphic relations are
properties that input-output pairs that exercise the SUT must up-
hold. Such relations enable powerful testing techniques by defining
rules that the system’s behavior must invariantly respect under
certain conditions. These relations implicitly specify how one can
transform input objects to produce additional tests based on pre-
viously generated data. MROPs are domain-agnostic higher-level
abstractions that define general output behavior typically found
in web APIs, and consist of manipulating (i.e., adding, removing,
mutating) input resources. The paper identifies 6 such abstractions,
each of which can instantiate several metamorphic relations for an
API under test, which can in turn be used to generate concrete test
cases. These abstraction levels are helpful in guiding testers toward
creating structurally meaningful metamorphic tests, and auxiliary
data generation strategies can automate the implementation of
concrete test cases stemming from the inferred hierarchies.

RESTler [8] is a tool that enhances lightweight analysis of the
system’s OAS with two heuristic additions that increase the effi-
ciency of fuzzing the target API. The tool proceeds in iterations
that produce increasingly lengthier sequences of requests used to
fuzz the SUT. Each round of the algorithm produces new sequences



by appending one HTTP request to a previous test case. This tech-
nique can be either stochastic or exhaustive. Consumer-producer
relations are the base model for dependencies between requests.
This model is implemented as follows: when attempting to extend
a sequence with an additional request that requires the existence of
a resource (the consumer), RESTler only "accepts" this extension
if a previous request (the producer) in the sequence creates such a
resource. By having producers precede consumers in all sequences,
it is less likely that the test would fail due to mishandling of the
system’s state. The second novel contribution is dynamic feedback,
a strategy that discards sequences that fail (5XX return codes) from
future iterations of the algorithm, as to avoid spending the computa-
tional budget on test cases that are guaranteed to crash the system.
With its fuzzing-centered approach, RESTler does not exploit any
model knowledge of the SUT, but it does allow for domain-specific
parameters, such as pre-defined dictionaries for sampling variables.

Pythia [7] uses a statistical model to infer recurring usage pat-
terns of REST API input data with the goal of generating more
powerful mutation operators for fuzzing the SUT. To realize its
framework, Pythia employs a three-stage pipeline. First, test cases
are provided as input, either by capturing network traffic or by
using the output of a standalone fuzzer, such as RESTler [8]. The
tool then utilizes a user-provided grammar to parse the input test
cases into abstract syntax tree (AST) representations. The second
phase exploits the derived ASTs by training a seq2seq [46] autoen-
coder to learn the common structure of the underlying test cases.
A mutation engine utilizes the trained autoencoder by injecting
minimal noise between the encoding and the decoding phases to
perturb the output, while still producing valid test cases. The loca-
tion of perturbation in the output (if any) determines the mutation
strategy applied to the target test case. An empirical evaluation of
7 real-world REST APIs finds that the novel implementations of
Pythia outperform RESTler both in terms of structural coverage
and in the number of defects uncovered.

Karlsson et al. [24] propose a property-based testing (PBT) ap-
proach called QuickREST. The aim of PBT is to generate input data
in a fuzzer-like fashion to check the validity of pre-defined SUT’s
properties (also called invariants), with the additional goal of find-
ing the simplest possible input that causes the program to violate
its invariants, if any. For REST APIs, OAS serves as the basis for
deriving such properties. In particular, the invariant for each path in
the documentation requires that all generated test cases (i) produce
return codes different than 5XX, (ii) produce return codes in accor-
dance with the specification, and (iii) produce responses whose
payloads conform to the specification. Randomly generated input
that either finds or successfully creates resources in the underly-
ing system is cached and reused for requests that require prior
state alterations, as to amortize the search procedure. Initial test
data generation is entirely random, though QuickREST supports
domain-appropriate alternatives, which can significantly improve
performance compared to fuzzing.

RestTestGen [13, 48] is a tool that heuristically enhances the
analysis of the OAS by enabling the reuse shared request data. An
Operation Dependency Graph (ODG) serves as the model which
captures a hierarchical dependency structure between the available
operations of the SUT. Nodes in the graph represent operations
specified by the OAS, and directed edges containing variable name

annotations determine the order in which to target operations.
An edge is drawn between two nodes when the output of one
operation contains an identifier whose name is similar to the input
to a different node. As the API outputs values during testing, they
may be cached in a response dictionary and reused for testing
upstream nodes, thus circumventing the effort required to randomly
sample those values. RestTestGen generates test cases in a two-
phase process. It first creates nominal test cases according to the
ODG heuristic, testing the good-weather behavior of the API (using
response code 2XX as an oracle). Value generation for this stage
is driven by random samples for both strings and integers, with a
special bias for the empty string and 0, respectively. Second, the
nominal test cases are mutated in violation of the OAS schema,
aiming to test the API’s handling of invalid input, thus expecting
4XX codes.

Godefroid et al. [20] focus on the problem of intelligently gen-
erating input data for REST API fuzzing. They process the OAS
into several tree-formatted schemas, which encode the hierarchical
representation of request bodies. Each schema (tree) corresponds to
a specific request. Each node in the tree representation correlates
with a property field, which is subject to several mutation operators
during fuzzing. Mutations are applied both to individual nodes, as
well as to entire trees and paths within trees. This approach is im-
plemented in the RESTler tool [8] and experimentally validated on
several cloud-based RESTful APIs. Their empirical analysis shows
that a combination of mutation operators is beneficial, as is a search
technique that stochastically balances the number of operators ap-
plied to each schema. The authors also notice an imbalance in the
number of errors triggered in SUT (i.e., "easy" to find defects are
triggered more often). Value rendering, a technique which caches
and tags the payload body of API responses and uses a form of
pattern matching to re-use the stored values as inputs, alleviates
this problem. This technique closely resembles that employed in
RestTestGen [48] to avoid re-sampling the same input values.

RESTTest [36] is a modular tool that introduces an extension to
the OAS, that allows to better model the dependency structure of
API operation parameters. The inter-parameter dependency lan-
guage (IDL) [33] is based on the manual analysis of 2,500 operations
from 40 real-world applications [34] and enables automatic reason-
ing about the relations between input parameters of a REST API via
a reduction to the constraint satisfaction problem (CSP). RESTTest
integrates an IDL reasoning module that allows it to leverage a
lightweight interface for validating requests, and obtaining new
(both valid and invalid) requests based on its analysis of the OAS. To
generate test cases, RESTTest first constructs abstract test models
based on the OAS, which are later transformed into abstract test
cases through user-defined generation strategies that may include
auxiliary information from the IDL. The tool implements support
for both nominal and faulty test case generation. Oracles derive
from response codes and the OAS, and are defined in accordance
to the type of test case the algorithm seeks to generate. Finally,
test cases are instantiated into executable code in either online or
offline settings.

Leif [11] is a REST API fuzzer that attempts to reduce the large
search space induced by weakly typed input parameters, while
simultaneously bootstrapping the test case generation process. The
conceptual cornerstone of Leif is the Format-encoded Type (FET)
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lattice, a structure inspired by type lattices used in programming
language design to determine type casting validity. In a REST API
testing framework, FET lattices help determine the "true" types of in-
put parameter values by either accepting or rejecting proposed type
assignments. The lattice materializes under a tree-based model that
undergoes a disambiguation merging process that iteratively alters
the tree’s topology based on local structure. Test case generation
can exploit FET lattices by using their regular expression-encoded
type definitions as dictionaries to exhaustively query for input data.
Leif additionally accelerates the test generation process by cap-
turing HTTP traffic concerning the SUT, which also provides for
additional data for the lattice inference task.

bBOXRT [27] is a tool aimed at revealing robustness issues and
security vulnerabilities in RESTful API-based systems. It employs
a two-step approach that first exploits the OAS to generate tests
that abide by the specified input constraints before attempting to
alter these tests to trigger robustness-threatening behavior in the
API. For the first step, bBOXRT uses a randomly-driven generation
procedure called the workload generator that seeks to create input
data that leads to specification-correct behavior in the SUT. Subse-
quently, the faultload generator applies type-specific mutations to
the data generated by the first process. This two-phase approach
is conceptually very similar to that of RestTestGen [48], however,
the fault injection strategy of bBOXRT is more involved. In partic-
ular, type-appropriate mutations are defined (such as boundary
manipulation for numeric inputs) and used in a fuzzing manner to
inject faults in the previously generated data. Finally, faults trig-
gered by executing the tests with the generated data are cached for
both generation techniques, and the robustness weaknesses of the
system are manually analyzed.

Mirabella et al. [39] introduce a deep learning-based framework
for validating REST API input data based on the system’s past be-
havior. This approach seeks to provide an oracle that can predict
whether generated test input can successfully exercise the SUT
without actually running the system. To do this, a neural network
is trained on an encoded tabular representation of input data and its
corresponding validity. Raw input data is enriched with (i) auxiliary
variables that signal whether the input data is empty, (ii) normaliza-
tion of numerical values that reduce the influence of high variation
between different input parameters, and (iii) one-hot encoding of
enumerator-based input parameters. The empirical analysis carried
out on 8 industry APIs demonstrates the viability of the results,
with the approach reaching an average test set accuracy of 97.3%.

Wu et al. [50] apply combinatorial testing (CT) in tandem with
approximate constraint inference to increase the cost-effectiveness
of test case generation for REST APIs, in a tool called RestCT. Their
approach draws from the intuition that failures in REST APIs can
often only be triggered if the associated input data satisfies a set of
non-trivial constraints, commonly regarding input-parameter value
combinations. To this end, RestCT seeks to identify hierarchical
relations that emerge from OAS, as well as CRUD semantic proper-
ties. The tool uses natural language processing (NLP) techniques to
exploit the NL channel of the OAS, seeking to identify members of a
set of 23 dependency patterns specified by the authors. This catalog
was extracted from the manual analysis of 40 real-world test APIs.
The tool generates test input data using one of four procedures,
either utilizing previously encountered values and specification

information, or sampling values at random to increase diversity. To
generate semantically sound tests, the sequence of requests in a test
case must ensure that a resource is not accessed before creation or
after deletion. This constraint enforcement technique is similar to
the consumer-producer model employed in RESTler [8], however,
RestCT imposes stronger conditions concerning the ordering of
constraints, thus significantly truncating the search space. Also
similar to RESTler is the generation mechanism, which appends
constraint-satisfying commands to the end of sequences created in
previous iterations. RestCT empirically outperforms RESTler on
several open-source APIs.

ARTE [1] is a tool integrated in RESTest [36] that aims to reduce
the size of the search space of input data generation by automati-
cally producing realistic input data for REST API test cases through
the use of knowledge bases. This technique is motivated by the
limitations of dictionary- and stochasticity-based approaches. To
address this issue, the authors implement a four stage pipeline.
The input generation strategy begins with processing the OAS de-
scription of target parameters through standard NLP techniques to
heuristically extract nouns that best match the name of the target
parameter. Second, ARTE queries a provided knowledge base for
predicates that best match the extracted nouns in the first step,
according to six hierarchically ordered rules. The approach only
uses predicates whose support, defined as the number of Resource
Description Framework (RDF) triplets that contain it, exceeds a
fixed threshold. Once extracted, the predicates can be used to gen-
erate the final input data for the test cases. To this end, ARTE builds
queries that contain as many of the selected predicates as possi-
ble. However, because results for individual predicates may repeat
between different query results, a relatively high fixed threshold
of 100 is enforced for the number of total matching objects. The
the constraints imposed on the query are iteratively eased until the
number of obtained results exceeds this threshold. Finally, ARTE
offers the optional feature of generating regular expressions that
encapsulate the obtained input data. The results show that the gen-
erated data is both semantically and syntactically meaningful, with
around 57% of input generated using this strategy resulting in valid
API calls, and around 65% being semantically appropriate.

Schemathesis [23] is an adaptable tool that derives structure-
and semantic- aware fuzzers for API-based systems. The tool ex-
ploits the API’s OAS through the usage of Hypothesis [31], a
state-of-the-art tool for PBT. Incorporating an external tool into
the test case generation process allows Schemathesis to leverage
advanced techniques while circumventing the implementation ef-
fort. Hypothesis seamlessly integrates into this workflow, as it
allows the JSON representation of the OAS to serve as input for
the creation of sophisticated data generation strategies without
requiring a complex conversion process. To generate negative test
cases, Schemathesis applies mutations to the OAS and again relies
on Hypothesis to infer input generators for invalid excerpts of the
OAS. The tool allows for extensive customization, such as modifi-
able test oracles and format specifiers for complex input data. The
authors empirically compare Schemathesis against 8 alternative
tools on 16 real-world APIs and find that their tool is the most
effective at bug discovery, finding between 1.4× and 4.5× more
defects than the second-best performing tool.



Morest [30] expands on RestTestGen’s ODG implementation by
formulating a novel restful-service property graph (RPG). The RPG
establishes the same consumer-producer relation between entities,
however, it simultaneously considers both schema and operation
nodes, and includes additional labels on its directed edges. The
algorithm first builds an RPG from the OAS, and iteratively refines
it as test execution progresses. Morest alters the graph’s topology
by exploiting misalignments between the OAS and the system’s
observed behavior. To this end, the graph receives additional edges
if the system returns undocumented objects in responses, which
could be leveraged in the subsequent requests. Graph edges may
also be rendered infeasible if, after a pre-set number of tries, input
obtained from other operations fails to produce a valid response.
To generate test cases, argument-free request sequences are first
created by recursively traversing the RPG’s schema nodes. Heuristic
rules are in place to reduce the number of misplaced requests, such
as deleting resources before accessing them or accessing resources
before creating them. Input data is generated for test cases either
by (i) reusing previously valid input data, (ii) reusing the return
values of previous requests as per the RPG, or (iii) sampling random
values from the possible value range.

4.2 Model-based approaches
Pinheiro et al. [42] propone one of the first model-based approaches
for REST API testing. Their tool employs a UML-based representa-
tion of Protocol State Machine models to derive coverage criteria in
terms of states and transitions. The state machine model is appropri-
ate for this task because its detail granularity suffices to accurately
describe the behavior of the SUT, while simultaneously providing
a measurable qualitative assessment for generated test suites. The
model’s states are enriched with additional information, including
state invariants and composite states, which include nested state
machines. Transitions between states are modeled by elementary
POST, PUT, and DELETE requests that are only equipped with an
adjacent resource. Crucially, this means that the task of finding
appropriate additional parameters for these transitional request is
left to the tester. To leverage the state machine model, the authors
propose an approach that heuristically expands a directed acyclic
graph (DAG) based on the model, where state invariants of the
behavioral model are inherited in the generated graph. The DAG is
then used as the basis for two coverage criteria: state coverage of
nodes in the graph and transition coverage by means of traversing
the graph in a recursive, node-invariant abiding manner, such that
all possible transitions are greedily expanded for each node.

Fertig and Braun [17] formulate a test case generation tool that
specifically targets systems built using Model Driven Software En-
gineering (MDSE). Their tool makes heavy use of formal models to
derive test case specifications that are then filled using data gener-
ators. The framework additionally specifies one template for each
possible HTTP action, such that requests that are heavily reliant
on data being already available at the endpoint prior to invocation
(such as POST and PUT) can be tested appropriately. The formal
model of the SUT is exploited for generating data for the HTTP
requests by, for instance, defining truncated domains for path vari-
ables adjacent to an endpoint. This property is exceptionally useful
because removes large portions of the search space, thus making

the test case generation more efficient. However, a drawback of
this approach is that it is only viable when detailed and accurate
formal models are available for the SUT, making generalizability a
challenge.

5 WHITE-BOX REST API TESTING
EvoMaster [2] is a tool for generating system-level tests for REST
API applications implemented in JVM-based languages. Originally
designed for white-box scenarios, EvoMaster exploits search-based
techniques to iteratively improve a set of individual test cases. The
modular architecture of the framework allows for the implementa-
tion of different evolutionary algorithms that serve as the engine for
the test case generation process. In addition to exploiting the OAS of
the system, the key difference in comparison to black-box counter-
parts is that EvoMaster assumes the entire source code base of the
SUT is available, and as such can be instrumented and manipulated
to provide more concrete testing targets. By default, EvoMaster
defines coverage targets of three types: statement coverage, branch
coverage, and HTTP status code coverage in accordance to the
OAS. In addition to standard techniques of "smoothing" the search
space, EvoMaster introduces a measure of distance that disincen-
tivizes tests that result in exceptions on the path to a specific target.
EvoMaster uses smart sampling, a technique tjat, once triggered for
a request, prepends that request with a sequence of other requests
sampled according to pre-defined rules, which aim to bring the
system to an appropriate state.

Much the research effort in the domain of white-box REST API
testing has been centered around the EvoMaster framework, namely
by proposing increasingly performant algorithms that can be in-
serted as modules for test case generation. Section 5.1 surveys
such algorithms, while Section 5.2 focuses on futher refinements of
EvoMaster.

5.1 Evolutionary Algorithms for White-Box
REST API testing

One of the first works to extend the notions of search-based soft-
ware testing to the object-oriented (OO) domain and introduce
the notion of dynamic targets (i.e., selecting different objective
functions from the SUT) is that of Tonella [47]. Though Genetic
Algorithms had been used for the test case generation problem
previously (i.e., Sthamer [45] demonstrated the advantages of GAs
in comparison to random testing; Michael and McGraw [38] investi-
gated the challenges of scaling up search-based test case generation
to complex systems; Pargas et. al [41] introduced dynamic target
selection to GA-based test generation), these solutions were built
for the procedural programming paradigm. The adaptations pro-
posed by Tonella enabled GA-based algorithms to be applied to
object-oriented software, an application that grew tremendously in
importance as the OO paradigm gained popularity in the following
decades.

Regarding its application to REST APIs, the relevance of the
approach resides in the way it targets objectives. The algorithm,
representative of a class called single-target approaches, first ran-
domly selects an unreached target (i.e., a branch) before evolving
the pool of test cases (the population) using a heuristic (i.e., branch
distance) to approach it. A new target is selected either when a test
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in the current population reaches the previous one or after a prede-
termined number of generations. This method suffers from two key
drawbacks: (1) the computational budget is uniformly distributed
among the targets, meaning that infeasible targets may significantly
slow down the algorithm, and (2) inadvertently reached targets are
not effectively exploited. For instance, a test A in the population
reaches an uncovered target X but not the current objective, and
another test B from the same population reaches the objective tar-
get but not X, only test B is kept in the archive, and target X will
be optimized for in a future generation. Pargas et al. [41] previ-
ously noted this drawback, which was later addressed by different
formulations.

To mitigate the shortcomings of the single-target strategy, the
Whole Test Suite (WTS) [19] algorithm institutes an approach
where instead of test cases, the search space is composed of test
suites. Accordingly, the optimization is single-objective and tracks
a scalarized version of the many-objective approach. This trans-
formation from the many-objective space to the single-objective
scalarization can be thought of as a combination of two techniques
used in evolutionary computation: weighted Tchebycheff utility
functions and hypervolume indicators [56]. The WTS approach
uses a weighted aggregation-based objective function formulation
but behaves similarly to hypervolume indicators in that the func-
tion is used to evolve the collection of underlying tests all at once.
The advantages of this formulation are (1) that infeasible targets
are no longer individually optimized for, and (2) that once covered,
a target will not be re-optimized for in a separate, independent
test that seeks to reach, for instance, a nested branch. In its imple-
mentation, WTS also includes a penalty for uncovered methods to
increase selection pressure.

WTS employs a population of sets of test cases. Each set may
contain up to 𝑁 tests, which can be up to 𝐿 statements long. Both
recombination and mutation are supported at the set level. Recom-
bination follows a one-point crossover pattern, where subsets of
tests are "swapped" between parents to produce offspring. Muta-
tion is performed by stochastically altering the tests in a member
of the population, by either removing, changing, or inserting a
new statement. Random test cases are sampled to generate the ini-
tial population, by repeatedly using the insertion-based mutation
probabilistically.

The Many Independent Objective (MIO) algorithm [3] is a tai-
lored evolutionary algorithm that aims to improve the scalability of
automated test case generation for software with very high number
of individual test targets. MIO introduces a novel population mod-
elling concept which works in tandem a tailored sampling strategy
to alleviate the weaknesses of the single-target approach. In MIO,
each target (assumed to be indepedently optimizable) is granted a
unique population of a bounded size. Whenever a new test is sam-
pled, it is assigned a heuristic value for each of the (yet unreached)
test targets, based on how close it is to reaching that target. If the
sampled test is better than that population’s worst member, it re-
places the weaker counterpart in that target’s population. If the
sampled test reaches a previously unreached target, that objective
is dropped from the optimization function.

The sampling procedure used in MIO functions through two
channels: random generation or mutation of existing members.
To complement the dynamic population system, MIO introduces

Feedback-Directed Sampling (FDS) for the population sampling
channel. FDS is a mechanism that seeks to bias the exploratory
process toward targets with a higher chance of being reachable as
opposed to spreading the exploration budget uniformly. In FDS,
each population is assigned a counter that is incremented each time
it is sampled for mutation purposes, and reset whenever a better
member is added to it. Populations with lower counters (i.e., that
have recently been improved) are favored.

TheMany-Objective Sorting Algorithm (MOSA) [40] provides an
alternative formulation of the test case generation problem. It treats
all (not yet covered) targets in the SUT as distinct and independently
targetable objectives, to be optimized simultaneously. This method
is motivated by the inefficiency of scalarization-based methods for
some common classes of problems [14], and the effectiveness of
many-objective solutions in complex problem settings [22, 26]. In
MOSA, each branch in the target program underlies an objective to
be minimized, composed of the sum of the minimum normalized
branch distance (computed in the same way as in WTS [19]) and
the approach level. The search space is composed of individual test
cases. In addition, the authors introduce the notion of preference
concerning a target: a test is preferred over another if the former’s
objective evaluation (i.e., normalized branch distance + approach
level) for that objective is smaller than the latter’s.

In the test case generation setting, certain general concepts from
numerical many-objective optimization, such as thew goal of gen-
erating a set of non-dominated solutions that capture trade-offs,
do not align well. In addition, since the number of targets in real-
world systems may reach thousands, and the number of solutions
in Pareto optimal sets increases exponentially in the number of
objectives [49], a mechanism that selects individuals that reach op-
timality for as many objectives as possible is necessary. To do this,
MOSA uses preference sorting to distinguish between pairs of non-
dominated individuals. In particular, this mechanism separates the
test(s) with the best objective function for each uncovered branch.
MOSA then inserts these tests in the next generation’s population
before selecting from the remainder of the non-dominated tests
using the standard non-domination sorting routine. This increases
the selection pressure by preferring the best test cases with respect
to at least one target. Finally, the selection procedure uses crowding
distance as a metric to increase the probability of selecting a diverse
set of test cases.

LT-MOSA [44] is an extension of MOSA [40] that targets REST
API test case generation by leveraging Linkage Structure learning.
More specifically, groups of genes commonly present in "good"
members of the population are statistically identified in an above-
average subset of individuals and used in the creation of subse-
quent populations. Instead of representing test cases in the stan-
dard chromosomal way used for the core search procedure, a novel
constrained, fixed-length representation linkage encoding is used
solely for the learning task. This encoding uses an ordered list of
binary variables that each represent the presence of a particular
HTTP action in a given individual.

To build the linkage tree model, a greedy algorithm successively
merges groups of variables based on the unweighted pair group
method with arithmetic mean (UPGMA). The model is built using
the individuals in the first non-dominated front. At each iteration,
the algorithm computes the distance between every possible group



of genes based on the mutual information computation (i.e., the
difference between the sum of individual information entropies
and the joint information entropy). The hierarchical aspect of this
solution refers to how variables are clustered together: the greedy
algorithm starts from a set of singleton groups of genes before
merging two groups at each iteration. The information captured
by the LT model is leveraged through MOSA’s recombination oper-
ator. Two individuals, a parent and a donor are sampled from the
population by means of tournament selection. A single offspring
emerges by first copying all the genes from the parent and then
possibly injecting additional genes from the donor. Subsets that
are part of the learned model and which manifest in the donor’s
chromosomal representation are sampled at random and injected
into the generated offspring at a random point. If no such subset is
present in the donor, the standard one-point crossover operator is
employed instead. Finally, LT-MOSA performs mutation stochasti-
cally, with a linearly increasing probability that is less perturbative
in the early generations and more so in later ones.

5.2 Heuristics Enhancements for White-Box
REST API testing

Arcuri and Galeotti [5] focus on the interaction between APIs and
SUT’s database to improve test case generation. To provide more
informed guidance, they introduce a driver-level SQL monitor that
captures the system’s outgoing SQL commands. To complement this
information, the notion of SQL distance is introduced for SELECT
queries, as an analogous alternative to the branch distance heuristic
used at the code level. This metric heuristically computes how
"close" a query is to matching data out of a sampled subset of rows
in the database. The SQL distance is implemented as a secondary
dimension of the fitness function used in the evolutionary algorithm
of EvoMaster, as a way of discriminating between individuals with
equal values along the first (structural coverage) dimension. To
compute this value, 3 formulas are established, that use different
heuristic biases to determine a fitness value for a given test case.
The authors further allow for the direct insertion of data into SQL
databases, which circumvents the necessity of sampling an unlikely
sequence of requests for this purpose. Additional focus is placed
on automatically handling constraints imposed by SQL’s CHECK
semantics, and regular expressions required by LIKE and SIMILAR
queries. An empirical study carried out on six REST APIs shows
that the novel techniques can improve the coverage of EvoMaster
by up to 16.5% and discover previously unfound bugs, but they can
also adversely impact test bloat by generating larger tests.

Zhang et al. [54, 55] focus on improving resource-centric knowl-
edge exploitation in EvoMaster. The backbone of this approach
consists of 10 semantically meaningful resource-based templates
used to generate new test cases during search. These templates
enable resource-based sampling, a technique that relies on four
sampling methods equipped with necessary preconditions. Both
the methods themselves and the preconditions account for depen-
dency relations between resources and templates, respectively. To
select which method to use, the proposed approach utilizes five
sampling strategies, that each focus on different factors, including
the structure of the SUT’s endpoints, the remaining search budget,

and previously sampled methods. An adjacent resource-based mu-
tation operator is established to operate within the confines of the
template sampling conditions. To further enhance sampling and
mutation, a heuristic dependency handler is defined. Dependencies
are identified statically from the OAS based on the names that de-
velopers assign to resources and parameters, and from SQL tables.
Runtime fitness feedback is also considered, and dependencies are
inferred based on the effect of past resource-based mutations. A
graphical model represents the dependency structure of the SUT,
and individual dependencies exhibit an additional confidence pa-
rameter that is adapted during search, and represents the approxi-
mate likelihood of the dependency being "true". Complementary
sampling and mutation operators emerge from dependency analy-
sis, which materializes in the implementation of a parameter that
controls the probability of sampling linked resources, when appro-
priate. An empirical analysis of 7 open-source REST APIs and 12
synthetic APIs reveals that the novel additions improve the overall
performance of the tool in 17 of the 19 total benchmark instances
and that both resource-based sampling and dependency analysis
are individually valuable extensions.

Arcuri and Galeotti [6] establish a list of testability transforma-
tions aimed at improving the guidance of fitness functions used
in EvoMaster. Testability transformations are implemented byte-
code manipulation techniques that replace existing methods with
alternatives that provide more fine-grained guidance. The authors
introduce four categories of suchmanipulations, to address different
ways in which traditional fitness functions may reach a so-called
plateau. The flag problem, a phenomenon that often occurs when
fitness objectives are binary, is addressed by introducing heuristic
distance metrics for 11 boolean class methods. This information is
further exploited through input tracking, a technique that observes
when input variables are directly used by replaced methods. This
technique enables a more effective, context-appropriate, mutation
operator to be leveraged on such input. An additional transforma-
tion is defined to tackle likely causes of incompleteness in OAS
schemas. This transformation tracks specific objects that automatic
schema generation tools may fail to exploit, in such a way as to
derive optional genes that target the newly uncovered query pa-
rameters or their types. Finally, a TCP-specific transformation is
applied to keep connections to the SUT alive for longer. The authors
evaluate their additions to 3 toy systems, 9 real-world REST API
services, and 1 industrial web service. The empirical study demon-
strates the effectiveness of the testability transformations, with an
increase of up to 10× better line coverage for the industrial API,
and a statistically significant improvement in complex open-source
systems.

Zhang and Arcuri [51] introduce a weight-based adaptation
mechanism for mutation rates during evolutionary search. Weights
represent a balancing device that aims to proportionately adjust
the mutation probability of genes with respect to the size of the
represented underlying object. In practice, genes that correspond to
larger objects (such as arrays) receive a high probability of undergo-
ing mutation at each iteration than smaller ones (like booleans). To
complement this mechanism, the rate of mutation (i.e., the expected
number of mutations suffered by an individual in each iteration)
can also be appropriately adapted. To this end, the authors propose
a formula that adjusts the mutation rate by a factor proportional
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to the weight of a gene in relation to a selected gene superset. The
proposed mutation framework additionally takes into account the
impact of each performed mutation. The impact of a gene is flexibly
defined in terms of the number of times a mutation of that gene
changed the fitness of an individual for a testing target and the
number of times in which it has not done so. The derived weights
can be implemented in the standard hypermutation formula to de-
rive adaptable probabilities. Adaptive gene selection and adaptive
gene value mutation are derived using impact-based weights and
married together in a mechanism called adaptive weight-based hy-
permutation (AWBH). The overarching AWBH framework enables
the definition of all of the operators required to define general-
purpose mutation functionality, which can be modularly connected
to existing EAs. The performance of the novel mutation operator
is assessed in an empirical analysis over 7 open-source REST APIs.
Adaptive mutation is found to improve coverage in 18 considered
assessment criteria and decrease performance in 9. Weight-based
mutation contrastingly improves coverage in 19 cases and only
worsens performance in 2. The combination of both techniques is
shown to significantly improve performance over the baseline in
all but two assessed criteria.

6 APPLICATIONS AND ANALYSES
Martin-Lopez et al. [35] present a list of 10 test coverage criteria
that aim at offering a comprehensive assessment of the quality of a
given test suite. The proposed criteria cover both the API’s request
and response behavior, and referred to as input and output coverage,
respectively. The authors categorise the coverage measures into a
Test Coverage Model (TCM) composed of 7 Test Coverage Levels
(TCLs), with the goal of establishing a unifying framework for test
suite assessment. TCLs are hierarchically ranked on the basis of
the strength of the criteria they correspond to. In this hierarchy,
all weaker TCLs’ requirements (where level 0 is the weakest) must
be fulfilled for a particular test suite to "progress" in the hierarchy.
This distinction is, however, different from the subsumption-based
ranking of traditional coverage criteria, meaning that the criteria
corresponding to higher level TCLs do not necessarily subsume
those of lower level TCLs. The authors evaluate the potential of the
TCM on test suites generated using EvoMaster [3] on 2 REST APIs
and find that the hierarchical structure of TCLs suitably represents
the quality of test suites. Concretely, test suites that minimally meet
the requirements of lower TCLs generally achieve lower coverage
and discover fewer errors than those that fulfill higher TCLs.

Arcuri [4] compares the performance of black- and white-box
testing approaches by running EvoMaster [2] on 8 industrial APIs,
to assess whether the additional overhead incurred by white-box
approaches translates into higher coverage. MIO [3] is used as the
driving algorithm for the white-box scenarios, while a random
testing approach drives the black-box strategy. The quality of the
resulting test suites is compared in terms of size, return code and
code coverage, as well as the number of faults found. The results
show that the additional information leveraged by white-box ap-
proaches is in fact effective in comparison to random testing, as the
white-box mode outperforms its counterpart in almost every cover-
age criterion. There are only 3 instances of return code coverage
where the black-box strategy equals its counterpart. In contrast,

the black-box approach produces significantly smaller test suites,
with an average length an order of magnitude smaller than the
white-box approach in 6 out of 8 cases.

Godefroid et al. [21] apply automated REST API test case gen-
eration to the task of differential regression testing, which aims
at finding regressions, or breaking changes, between different ver-
sions of REST APIs, both in the API specification, as well as in the
underlying service itself. For this task, RESTler [8] to generate test
cases based on the version-specific API specification of the services,
and process the results using differential testing to detect potential
descrepencies across versions. The authors carry out an empirical
analysis on 17 versions of Azure networking APIs and detect a total
14 previously undiscovered breaking changes that were later fixed
in subsequent deployments.

Corradini et al. [12] compare RestTestGen [48], RESTler [8],
bBXORT [27], and RESTest [36] in terms of robustness and test
coverage on 14 real-world REST services. Their results suggest
RESTler is the most robust tool, and the only on that is able to
generate tests for all benchmark instances. Test coverage analysis
indicates RestTestGen is performs the best in terms of 5 coverag
criteria, while bBOXRT and RESTler each perform best in one cri-
terion. RESTest is the weakest performer in both categories, only
supporting 2 of the 14 REST APIs and never providing the highest
coverage.

Martin-Lopez et al. [32] investigate the differences between
black-box and white-box testing in an empirical analysis on 4 real-
world systems. RESTest [36] is used as the BB example and Evo-
Master [2] using the default MIO [3] search algorithm is the WB
counterpart. To measure the performance of the tools, the authors
measure both the achieved branch coverage of each resulting test
suite, as well as the number of faults detected (i.e., the number
of endpoints returning at least one 5XX status code). Their results
show that the BB approach performed better than its WB coun-
terpart with statistical evidence in 2 out of the 4 instances. The
authors suggest that the complex and rule-based nature of the un-
derlying system is the reason for this discrepancy. In particular,
some of the tested systems require highly structured input for re-
quests to be valid, such as small subsets of strings (i.e., en-US for
a language parameter). Random sampling-based input generation
tools such as EvoMaster are unlikely to match such strings. In con-
trast, RESTest employs test data generators for this task, which
greatly improves the probability of sampling acceptable requests.
The authors additionally propose a novel approach that builds a
pipeline based on both the BB and WB approaches. This system
works as follows: first, RESTest generates a test suite in its standard
configuration, with only a fraction of the total time budget. The test
suite is then written to an intermediary format before being parsed
and passed on to EvoMaster in the appropriate embedding. Finally,
EvoMaster uses the received test cases as the initial population,
which it evolves using a GA, for the remainder of the time budget.
The final solution is the elitist archive which the underlying GA
of EvoMaster returns. Analysis shows that the hybrid approach
outperforms EvoMaster alone by up to 60% in all instances, and
RESTest alone by between 1.1% and 4.8% for 3 out of the 4 systems,
suggesting that the combination of approaches is more powerful



than either of them in isolation. The analysis of the achieved cov-
erage over time also shows that the BB approach converges much
faster than the WB counterpart.

Martin-Lopez et al. [37] use RESTest [36] to empirically test
the effectiveness of automatic test case generation on 13 industrial
REST APIs. To assess the practicality of using automatic test cases
generation for production-ready and web-scaled systems, the au-
thors measure several metrics regarding failure and fault detection
rates and API coverage in relation to the specification. After gen-
erating over 1 million test cases over a 15-day period, the results
revealed a total of 147 faults in 11 APIs, with specification discon-
formities causing around half, and accepting invalid API inputs
causing around one third. The experiments also show that different
data generation techniques (i.e., fuzzing, data perturbation, and
random inputs) are complementary and capable of detecting faults.
In total, 248 bugs were detected throughout the experiment, 65 of
which were fixed by developers of the respective systems.

Kim et al. [25] carry out an analysis of 8 research tools and
2 open-source practitioner’s tools for REST API testing over 20
real-world systems with the goal of analyzing the code coverage
and error discovery capabilities. The analyzed tools are bBOXRT
[27], EvoMaster [2], RESTest [36], RESTler [8], RestTestGen [48],
Schemathesis [23], Dredd, APIFuzzer, and Tcases 4. In a black-box
setting, EvoMaster obtains the best coverage by all three consid-
ered criteria, and none of the available tools exceed 50% coverage.
Tcases, EvoMaster, and Schemathesis are on average able to trig-
ger the largest number of 5XX response codes, with Tcases being the
highest. In a white-box environment, EvoMaster drastically outper-
forms its counterparts both in terms of coverage and the number
of errors uncovered. The authors attribute this significant gap to
the coverage-driven guidance that white-box scenarios enable, that
allows EvoMaster to generate better quality input parameters. An-
other avenue for improvement is the ability of tools to generate
so-called stateful tests by better taking into account the producer-
consumer relationships between operations of the SUT.

Zhang and Arcuri [52] empirically compare 7 state-of-the-art
fuzzers in both black- and white-box settings on a total of 18 open-
source and 1 industrial API. The analysis includes bBOXRT [27],
EvoMaster [2], RESTest [36], RestCT [50], RESTler [8], RestTestGen
[48], and Schemathesis [23]. The black-box experiments reveal
that EvoMaster and Schemathesis provide the best coverage in
all APIs but 1, with EvoMaster performing best in 11 cases, and
Schemathesis in 7. bBOXRT and RestTestGen are comparable, but
fall behind, while the remainder tools produce lower coverage.
White-box experiments are conducted using EvoMaster, and a sta-
tistically significant increase in code coverage is obtained in 15 out
of the 19 instances. An accompanying increase in the number of
detected faults is also observed, however, in many cases, the cover-
age does not exceed 50%. Both sets of results are consistent with
those of Kim et al. [25]. The authors conclude by identifying sev-
eral aspects that require attention when designing a REST API test
case generation tool, including robustness, schema fault tolerance,
database effect integration, and mocking external services.

Zhang et al. [53] apply EvoMaster at Meituan, with the goal
of assessing the quality of integrating research-oriented tools on
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scale-sensitive tools in industry. The results show that EvoMaster
is able to generate both meaningful coverage of between 10.9 and
79.8%, as well as reveal previously unknown bugs. Overall, the tool
achieved an average of 51.7% and 71.3% coverage of business logic
and endpoint components of the system, respectively, while also
uncovering 21 real faults. The authors reflect on 10 challenges that
the experiment revealed, which they recommend future research
efforts focus on.

7 CHALLENGES AND OPPORTUNITIES
Despite a significant increase research efforts in recent years, the
area of REST API testing is still in its early stages. This section
summarizes the challenges facing future research in this area and
the opportunities that arise as a consequence.

7.1 Challenges
Several hard challenges remain unsolved in REST API testing, both
domain-specific, as well as more general in nature.

Generating meaningful stateful sequences. For test cases to ex-
ercise complex functionality within the API, resources need to be
adjusted accordingly before the invocation of certain methods. We
refer to the process of creating, modifying or otherwise altering the
state of resources with the goal of invoking further requests with
specific semantics as the stateful sequence problem. Intuitively, this
materializes in a the necessity of creating a resource before per-
forming a GET request on it, or, by contrast, not accessing a resource
anymore after its deletion. In practice, tools rely on heuristic ap-
proaches to address this problem, by either stochastically inserting
requests that seek to bring the system into the right state, or shap-
ing the sampling space to increase the probability of meaningful
stateful sequences being instantiated.

We hypothesize that relatively simple solutions like the ones
implemented in current state-of-the-art tools might fail to scale in
complex scenarios, where requests trigger complex state transitions
in SUT. Complex input dependencies and high independent traffic
in online testing might further aggravate the problem, which neces-
sitates more sophisticated solutions. However, no available research
directly analyze such strategies, so the assessing their strengths
and weaknesses can only be done analytically.

Reasoning about parameter interdependence. Automatically gen-
erating semantically meaningful test cases requires a logical flow of
information between the sequence of HTTP requests. In practice,
this means that often, requests have to share identical parameters
to trigger complex behavior in the SUT. Relying on random gen-
erators to solve this problem is a suboptimal strategy due to the
low likelihood of generating identical inputs multiple times in large
search spaces. To mitigate this, several approaches have been pro-
posed, which base themselves on one of three principles: either
(i) reusing old values which have resulted in valid test cases, (ii)
utilizing predefined dictionaries or examples provided in the OAS,
or (iii) taking advantage of values returned by, or used in other
operations. The latter approach shows the most promise, as it is
able to leverage not only static OAS information, but also dynamic
snippets that are either randomly generated or produced by the
system.
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Recent solutions based on NLP in RestCT [39] and property
graphs in Morest [30] have shown promising results in this area,
demonstrating the potential for improvement over more standard
approaches like RestTestGen’s consumer-producermodel. Such ap-
proaches are complementary: while NLP-based techniques may be
able to better leverage the information exhibited in the OAS, graph-
based solutions are more flexible and can be adjusted on-the-fly
according to the system’s feedback. We note that interdependence
problems can be easily reasoned about in scenarios where formal
models are available for the API under test. However, the lack of
popularity of model-based REST API testing suggests that the cost
of this requirement is likely too high for practitioners, and that
further pursuing current avenues of research might prove more
fruitful.

Generating input data. Stringent requirements on input data
formats and the lack of formal specifications in the OAS makes
generating input data for certain fields highly unlikely if done ran-
domly. Search-based methods may break down in such situations
due to extremely large search spaces for which very few candidates
are valid (for instance, the search space of strings that are also
country codes). Recent advances have emerged from both machine
learning (ML) techniques like ARTE [1] and constraint satisfaction
strategies like Leif [11]. Such approaches exceed the performance
of standard approaches like pre-defined dictionaries, motivating
further research in this area. Though results are promising, these
techniques have not been validated on large numbers of systems
and their generalizability is unproven.

Reliable and accurate oracles. The oracle problem iswell-established
in most branches of software testing, and is especially evident in
the case of RESTful APIs. Most approaches define oracles in terms
of return codes and adherence to the OAS specification. However,
such approaches fail to take into account situations in which the
OAS may be incomplete or misaligned, and there may be potential
for deriving online oracles from the API’s behavior over time.

7.2 Opportunities
In spite of facing numerous challenges, REST API testing also
presents opportunities that may significantly enhance the perfor-
mance of state-of-the-art tools.

Intersectional opportunities between black- andwhite-box approaches.
Previous work has shown that the code-level structural guidance
that white-box approaches benefit frommakes themmore generally
more capable than black-box approaches [25, 53]. However, liter-
ature still contains cases in which specific black-box approaches
are able to outperform their white-box counterparts [32], and that
a combination of the two may provide better coverage than either
could individually. To the best of our knowledge, combining the
two techniques has only been explored in one study [32], and many
potential combinations of the two strategies remain unexplored.
Intertwining black-box techniques with white-box guidance may
provide better insight into how to effectively improve the state of
the art.

Opportunities in data-driven approaches. Data-driven ML ap-
proaches have been proven effective for both input data gener-
ation [1, 7], input validation [39], and interdependency discovery
[50]. However, the scope of the on which the models are based is
relatively modest. For instance, RestCT’s catalog of dependency pat-
terns is composed from only 40 real-world OAS schemas. Exploring
data mining solutions that would allow to collect, process, and lever-
age larger amounts of data could improve both the performance
and the generalizability of existing techniques.

Additional fields for data-driven exploitation could also be stud-
ied. Chen et al. [11] fuzz reused API traffic to amortize test case
generation time. Moreover, algorithms like MIO [3] re-sample exist-
ing test cases before mutating them. However, there are no studies
in the current literature that assess the relative amortization that
results from reusing captured traffic, and no qualitative comparison
of generated and reused data exists. Because tools that generate
both input data and request sequences from scratch simultaneously
perform two search tasks, analyzing the benefit of reusing previ-
ous (input-free) request sequences may boost the performance of
current approaches by enabling them to better focus on the input
data generation problem.

Providing more detailed guidance for black-box approaches. Black-
box approaches trade off the guidance available through access to
the system’s source code for the versatility of not being subject to
language-specific requirements like instrumentation. Model-based
approaches provide better guidance through the inclusion of formal
models, which severely limits their use cases in the real world.
The drawback of lacking guidance may be partly ameliorated by
constructing an approximate and coarse-grained model driven by
the interaction with the API. The level of this model may range
depending on the application, and driving factors could vary from
API responses that help determine the underlying system’s state, to
logs the system produces during execution. Such approaches could
provide an appealing trade-off between the rigidity and accuracy of
formal model algorithms and the flexibility of OAS-based solutions.

Standardized data sets. Previous empirical analyses of REST API
testing tools have focused on relatively small data sets. To the best
of our knowledge, the empirical experiments of Corradini et al.
[12], Kim et al. [25], and Zhang and Arcuri [53] contain the largest
datasets assembled for assessing REST API testing tools. These
papers utilize data sets consisting of 14, 19, and 20 projects, re-
spectively. Since data sets differ between evaluations, proposing a
common corpus of projects to use for future evaluations would facil-
itate comparisons. Assembling larger data sets would also increase
the robustness and validity of results, while potentially providing
more insightful analysis.

8 CONCLUSION
This paper provided a comprehensive overview of research efforts
focusing on automated test case generation for RESTAPIs.We intro-
duced the necessary background and definitions used throughout
literature and analysed the distribution of papers over time and by
category. We surveyed available REST API testing tools that oper-
ate in black- and white-box approaches and highlighted real world



applications and analytical comparisons of recent work. We also an-
alyzed the current state of the field, outlining its biggest challenges
and suggesting appropriate opportunities for future work.
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