
In pursuit of reproducible release engineering pipelines for
extensible machine learning based systems

Konrad Ponichtera, Krzysztof Baran, Călin Georgescu
Dan Plămădeală, Casper Henkes

ABSTRACT
Machine learning based projects become more common as time
passes by. However, they also pose unique challenges stemming
from their experimental nature, which are not as prominent in the
traditional expert systems that can be verified for correctness in a
deterministic way. In this paper, we present the machine learning
based system, developed with modern release engineering practices
in mind. We also extended it by implementing continuous learning
and accommodating new data from its end users to help make the
model perform better. We emphasize the long-term maintainability
of the project by providing observability features that allow for
monitoring the model’s performance. Last but not least, we used
containerization to tackle the environment reproducibility chal-
lenges posed by the technological stack of Python, which is the
most commonly used language in the machine learning industry.

1 INTRODUCTION
With the growing performance of modern computers in the last
two decades, the mathematical principles behind machine learning
could be finally put into practice. However, the machine learning
systems’ experimental and often "black box" nature creates chal-
lenges that are difficult to predict in advance, like the accuracy of
the returned results or the data drift. Moreover, the technological
stack of the data science utilities is often curated towards experi-
mentation and data exploration rather than the production use in
the final product. This means that many implementations of the ma-
chine learning pipelines, for instance, in the Jupyter notebook [2],
cannot be used directly in practice. For this, it is necessary to design
a system from scratch and carefully cherry-pick the solutions from
the notebook. Since the vast majority of machine learning projects
and experiments are done in Python, creating a system in it brings
additional challenges, stemming from the fact that its ecosystem
was not created with the self-contained executables in mind. Unlike
Java with its JAR archives or Go and Rust with statically-compiled
native binaries, Python programs often rely on the dependencies
and libraries being installed as part of the system they are running
in.

Fortunately, many of the modern software engineering prac-
tices can be applied to machine learning projects. This includes
automation of the different parts of the release pipeline through con-
tinuous integration, delivery, and deployment. CI/CD can validate
the changes, drifts and inconsistencies in the learning procedures,
as well as lint the code to ensure good coding practices from the
machine learning perspective. Thanks to the rise of Docker [11] and
rapid adoption of containerization, it became possible to provide
lightweight, deterministic environments for Python applications,
each with its interpreter and dependencies. Since the cloud infras-
tructure providers expose APIs, which allow their clients to create
the resources on their premises programmatically, it opens new

possibilities for declaring the infrastructure itself as a code. This
makes it possible to utilize good coding practices and use CI/CD
not only to develop and deploy the application but also to provision
the environments.

One of the crucial elements of modern software engineering is
providing the deployed system with various observability capabili-
ties, like logging, metrics or tracing. The runtime metrics become
particularly useful in the case of systems equipped with machine
learning capabilities, allowing data scientists and engineers to as-
sess the performance of the models used in production.

In this paper, we will describe the system we created from
the proof of concept machine learning pipeline, delivered as a
Jupyter notebook. Its purpose is to tag the titles of StackOverflow
issues with related technologies. The developed system embeds this
pipeline into a microservice-based solution, which can be freely
scaled up and down as the amount of users changes. Moreover, we
have extended the pipeline with continuous learning capability,
allowing the users to provide feedback on the tags predicted by the
system and use this feedback to facilitate model learning further.
Thanks to the implemented observability measures like the metrics,
it is possible to monitor the effectiveness of continuous learning and
detect anomalies like the data drifts. What’s more, we explored the
ways of using Docker containers to benefit from their determinism
not only in the deployment stage but also during development and
running CI/CD jobs.

First, we discuss the solution’s architecture and how the modern
release engineering practices have been implemented there. Then
we focus on the implications of the decisions that we made during
development and if they managed to bring value to the maintain-
ability of the machine learning part of the system. Lastly, we discuss
the trade-offs made and how the system could be extended in the
future - either to tackle these trade-offs or to make better use of
the design decisions that were implemented.

2 RELATEDWORKS
The twelve-factor app paradigm proposed in [25] is a methodology
developed for the modern software-as-a-service paradigm that seeks
to improve the quality of applications facing contemporary chal-
lenges. To do this, best practices are recommended in twelve key
areas of the development process, ranging from codebase version
control to logging and concurrency management. One of the fac-
tors mentioned is the environment parity, which aims to increase
development agility by making the development environment as
similar to the deployed one as possible.

Another active area of research is the verification of machine
learning applications. The authors of [23] propose a generalizable
and adaptable way of assessing the condition of the quality as-
surance process that a machine learning system is subjected to.
They recommend a point-based scoring system that developers



Delft University of Technology, June 2022, Delft, The Netherlands Konrad Ponichtera, Krzysztof Baran, Călin Georgescu and Dan Plămădeală, Casper Henkes

can use as a guideline for determining the quality of their testing
practices. This score nudges developers to take machine learning
testing seriously and explore different methods to improve testing.

Furthermore, much research time has been dedicated to improv-
ing the reproducibility of machine learning applications. The au-
thors of [22] identify ten common shortcomings of machine learn-
ing experiment reproducibility and propose a set of 8 questions
that should be answered in publications to remedy these issues.
Additionally, Pineau et al. [19] created a checklist that should be
looked into before submitting machine learning papers to ensure
the results are reproducible.

Also, in the academic fields of machine learning and deep learn-
ing, it is widespread for the algorithms described in the research
papers not to provide sufficient information about the setup, con-
figuration, dependency versioning, and so on. This leads to non-
determinism, as described in [18], which can be particularly damag-
ing to real-world applications because it is not feasible for end-users
like engineers and scientists to fine-tune the large number of pa-
rameters present in the models they use.

3 SYSTEM DESIGN
The application’s initial state was a proof of concept, implemented
as a Jupyter Notebook. The notebook contains logic, which de-
scribes the whole machine learning pipeline of the solution: prepro-
cessing the data, fitting the logistic regression classifier, and testing
its performance. However, it was by no means a solution that could
be directly used in the production system. In order to be used like
that, it had to be rewritten into a standalone, fully-fledged system
that can be deployed to a server machine.

3.1 Implementation
The Jupyter notebook has been repurposed into a micro-service
system consisting of two applications: the learning and inference
service. The learning service is responsible for training the model,
while the inference service uses it to perform predictions. Addition-
ally, a small web application integrates with the inference service’s
API and allows users to query the service for predictions and pro-
vide feedback on the predictions.

Figure 1: Web interface, allowing users to provide the Stack-
Overflow title, query the inference service for the labels, and
provide feedback on the returned labels.

3.2 Deployment
All the applications have been packaged, along with their depen-
dencies, into Docker container images. The images contain the
minimum environment required by each of the services to run.
Not only does it allow to run each service independently from the
programs and libraries on the host operating system, but it also al-
lows making use of the container orchestration software. We chose
Kubernetes [6] since it is the most prominent and widely-used
orchestrator in the market. Moreover, many public cloud service
providers have Kubernetes distributions available in their offer,
removing the necessity to administer the cluster on-premises and
allowing for integration with other cloud resources. For this reason,
we decided to deploy the system to Google Cloud [12], utilizing its
Google Kubernetes Engine (GKE) [16].

Managing multiple Kubernetes resources is a potentially error-
prone procedure, which becomes even more problematic when
multiple environments are meant to be deployed. For this reason,
we decided to use Helm [5], which bundles Kubernetes resources
in archives called Charts and uses the Go templating language
to fill in the values that change between different deployments.
Helm is often called a "package manager for Kubernetes" due to
its workflow, which resembles how Linux package managers work,
allowing for deploying the whole system with one command and
optionally providing values specific to the environment.

Cloud infrastructure providers often expose an API, which al-
lows their clients to create the infrastructure in an automated way.
Choosing Google Cloud as a provider allowed us to utilize the
concept of "infrastructure as code" and design the system’s envi-
ronment with Terraform [10]. It defines infrastructure components
as "resources" in the HashiCorp Configuration Language (HCL) [9],
where each resource accepts input values and produces outputs
upon creation. This allows representing dependencies between dif-
ferent components in a natural way, where outputs of one resource
can be used as inputs of another one, resulting in a deterministic de-
ployment behavior. In addition to creating the resources, Terraform
performs reconciliation with the actual state of the infrastructure,
which allows it to be aware of all the changes that could have been
made outside of the HCL code. We used Terraform to provision
the infrastructure in Google Cloud and to manage the resources in
the Kubernetes cluster created as a part of the infrastructure. This
includes cluster components like our system’s Helm Chart and the
Prometheus [7] instance, which is used to collect the application
runtime metrics and send them to the Google Cloud’s operation
suite [15].

3.3 Pipeline extension
In addition to implementing a solution from the Jupyter notebook
as a production-ready system, we extended it with continuous
learning functionality. Instead of relying on the model, trained
locally by the developer or in the CI/CD pipeline, the users can
send feedback on the tags predicted for them by the system, for
example, by changing, adding, or removing them. The feedback
is then put in the Pub/Sub [13] message queue and collected by
the learning service, which caches it locally into the training CSV
file. That file is saved in the Kubernetes’ persistent volume, which



In pursuit of reproducible release engineering pipelines for extensible machine learning based systems Delft University of Technology, June 2022, Delft, The Netherlands

Figure 2: Infrastructure diagram of the system, deployed on
Google Cloud.

allows it to survive container recreation during system updates or
redeployment.

After a certain amount of feedback training samples is collected,
the learning service fits the model on the new training data. The
newly trainedmodel is then sent to Google Cloud Storage (GCS) [14]
bucket, an S3-compatible object storage service. The models in the
bucket are versioned, so it is always possible to restore the previous
one. Moreover, the learning service sends a message to the Pub/Sub
queue topic, to which the inference services are subscribed, and
informs them about the new model’s availability. Upon receiving
that message, each instance of the inference service downloads the
new model from the GCS bucket and uses it for future predictions.

3.4 Metrics
The learning and inference services exposemetrics in the Prometheus
format. In addition to standard metrics containing information
about Python’s runtime, custom ones about the trained model’s
performance were added. This includes accuracy, F1 score, average
precision, area under the receiver operating characteristic curve
(ROC), and timestamp of the latest model update. The Prometheus
instance, deployed to the Kubernetes cluster by Terraform, scrapes
all the service instances periodically and forwards collected metrics
to the Google Cloud’s operation suite. They can then be queried
from the Monitoring panel in the Google Cloud Console and used
to create dashboards.

3.5 Continuous integration, delivery and
deployment

Since the system’s source code is hosted on GitHub, the natu-
ral choice for the continuous integration and continuous delivery
(CI/CD) pipeline was GitHub Actions. All the steps, from validating
the code to deploying it to the infrastructure, are executed in the
workflows of the GitHub Actions.

Continuous integration is realized by executing workflows that
validate the quality of the code. This includes checking the code
formatting, executing Python’s linting utilities like pylint [8] and
mllint [24], as well as executing tests. In particular, learning service

tests are responsible for ensuring that the preprocessing pipeline
functions as expected, and so does the learning pipeline. The tests
are also used to ensure no anomalies in the testing data set, which is
stored in the application resources and used to assess the model per-
formance after each training batch. The Helm Chart is also linted,
as well as the Terraform project. Testing, linting, and formatting
validation are executed for every commit in the repository to pro-
vide developers with early feedback about their changes. Moreover,
the Docker images of all the system components are built for every
pull request to ensure no changes like incompatible Python depen-
dencies, which would block the pipeline from proceeding to the
next steps.

Continuous delivery is triggered by creating a semver-formatted
tag [3] in the repository’s main branch. The workflow builds the
Docker images of the services and pushes them to the GitHub Con-
tainer Registry so that they can be pulled later by the Kubernetes
cluster. Each image is tagged in accordance with the Git tag that
triggered the build. After the images are built and pushed, the Helm
Chart is packaged and uploaded as a release in the repository by
the chart releaser [1] utility. It also uses GitHub Pages to gener-
ate and publish a Helm repository based on the created releases.
The repository can be used by the administrators and Terraform to
deploy the system.

Continuous deployment is done by using GitHub Actions to
apply Terraform execution plans. Terraform is responsible for pro-
visioning the infrastructure in Google Cloud and creating all the
required resources in the Kubernetes cluster. The initial provision-
ing of the Google Cloud project has to be done manually. It includes
executing scripts to create the project, Terraform service account,
GCS bucket to store Terraform’s state file, and generating service
account key for GitHub Actions. However, once that is done, the
pipeline will automatically apply all the subsequent changes to the
infrastructure. This includes managing the system’s Helm Chart re-
lease - even if there were no changes to the Google Cloud resources
like the cluster or networking, the Terraform plan will still run and
upgrade the Helm Chart release in the cluster.

Configuration of the unique environments is stored in the repos-
itory as Terraform variable files for each environment. These vari-
ables do not include sensitive information like passwords or private
keys; instead, these are generated by Terraform and passed to the
Helm during the Chart release upgrade. There are two environ-
ments - test and production. The first one is deployed automatically
whenever a new release is created. The production deployment is
suspended until the GitHub repository administrator approves or
rejects it manually.

3.6 The concept of builder image
Although containerization provides a large degree of reproducibil-
ity when used for deploying applications, the necessity to rebuild
the images every time the code change is made would make the lo-
cal development cumbersome. This is particularly crippling where
interpreted languages like Python are used, where a considerable
benefit is the ability to change a file and simply restart the de-
veloped process quickly. However, working on the Python-based
system directly on the local machine can lead to a series of com-
patibility issues, like the Python interpreter versions mismatch or



Delft University of Technology, June 2022, Delft, The Netherlands Konrad Ponichtera, Krzysztof Baran, Călin Georgescu and Dan Plămădeală, Casper Henkes

having to manage the virtual environments with dependencies of
the individual applications.

In order to simulate that incompatibility, the learning service
uses Python 3.8, while the inference service requires Python 3.10.
This discrepancy automatically implies that the versions of the
dependencies are different as well since not all Python 3.10 libraries
are compatible with Python 3.8 and vice versa.

Our solution to that problem is a Docker builder image. It is
created from the first stage in the multi-stage build of the applica-
tion’s production container image. The builder stage contains all the
utilities and libraries necessary to build the application. After the
build is finished, the final artifact can be copied to the lightweight,
final stage, which results in the final image. Such an approach is
commonly used when containerizing the software.

The uniqueness of our approach comes from the fact that during
development, only the builder stage is used to create the image.
This image can then be used to create a container with an envi-
ronment explicitly curated for developing a particular application.
The project’s directory from the host machine is mounted directly
into the container, allowing the containerized interpreter to di-
rectly execute the source code, modified by the developer in their
IDE. By making the containerized process use host’s networking
namespace, the ports exposed by the application can be accessed
directly, without Docker’s default network isolation. Although, by
default, all the processes in the container are executed as root, the
process inside the builder container is run with the same user and
group identifiers as the host machine user. This prevents permission
problems on UNIX systems from occurring when the containerized
process creates a root-owned file in the directory, mounted from
the host machine. This makes them cumbersome to delete from the
host and can break the version control systems like Git, which are
not able to modify these files.

Python applications do not produce executables in the same
sense as other technologies like C/C++, Go, or Java. Instead, their
builder image is often used as a base for the final image. However,
splitting the stages and having access to the builder image still
brings certain benefits to the development process. Not only does it
allow the use of different Python versions for each application, but
it is also not necessary to create a virtual environment directory
on the developer’s local machine either - both the interpreter and
the libraries are available from within the builder container.

This approach is also used for the frontend web app, where its
builder image bundles pre-defined versions of Node.js and Angular
CLI.

3.7 Build task management
Although the GNU Make [20] is often used in Python projects as a
tool for grouping all the development operations, we chose Task [4]
instead. To define the tasks, it uses YAML-formatted files called
Taskfiles, which conceptually build on the idea of Makefile. How-
ever, the workflow is not opinionated by the C/C++ build stack and
is much easier to use with other technologies. In particular, Task-
files are much more flexible in terms of specifying the conditions
on when the particular tasks are up to date, which has proven to
be particularly useful when automating Terraform’s initial project
provisioning - for example, to skip new Google Cloud’s project

creation if it already exists, which requires invoking Google Cloud
SDK command. Task’s ability to create a hierarchy of Taskfiles
allows for splitting the tasks per module, making them much easier
to call and maintain than one large Makefile.

Most importantly, Task can be invoked on the host machine to
create the builder container with all the necessary parameters, like
host networking, specific user and group identifiers, and volume
mounts. Since all the builder images have Task installed, it is pos-
sible to chain Task executions so that operations like starting the
developed application or running the linter are always executed in
the same environment.

4 IMPLICATIONS
4.1 Production-ready machine learning system
The changes to the initial Jupyter notebook transformed the proof
of concept into a production-ready machine learning system, which
uses modern software engineering practices. This includes auto-
mated validation, build, and deployment pipelines, all the way
through providing observability features like a centralized log and
metrics browsing.

The containerization of the solution brought multiple benefits as
well. It allowed for creating a scalable and reproducible environment
on the Kubernetes cluster, which uses the orchestrator’s capabilities
of monitoring the application uptime and readiness, as well as
leverages its internal load balancing. As a result, the system became
much more resilient to failures like the application or machine
crashes since the failed applications can be easily rescheduled on
the working machines.

Moreover, extending the learning pipeline with continuous learn-
ing capability allows the system to potentially accommodate the
new data and use it to improve the model. Thanks to the observabil-
ity features like the logs, it is possible to look into the ongoing learn-
ing process and compare it to how the previous learning worked.
More importantly, exposing the metrics by the components of the
system allows monitoring the learning results like accuracy and
other statistics, giving a glimpse of how the currently used model
behaves. This is important for the production-grade system, where
business decisions are often made based on the insights collected
from the working system.

4.2 Environment replicability
One of the rules of the twelve-factor app paradigm [25] is the
environment parity, which means keeping the environments as
similar as possible. Thanks to the reproducible nature of the Docker
containers, ensuring the same application’s behavior during the
testing and production stages is simple and boils down to using
the same Docker image. Moreover, the containers can be executed
not only on the fully-fledged Kubernetes cluster but also locally
on the developer’s machine using Docker Compose. This allows to
quickly validate the behavior of the production build of the system
locally, without the necessity of configuring the local cluster and
its service exposal, which would be necessary for the Kubernetes.

However, this assumes that these environments use the same
infrastructure which Google Cloud provides in our case. Develop-
ers cannot access Google Cloud resources like Pub/Sub message
queue or GCS buckets unless they provision them manually or with



In pursuit of reproducible release engineering pipelines for extensible machine learning based systems Delft University of Technology, June 2022, Delft, The Netherlands

Figure 3: Model performance metrics in the Google Cloud
Monitoring dashboard after feeding the system with 30000
new feedback entries.

Terraform. To solve that problem, we used containerized services,
which run on the developer’s machines and use the same protocols
as their cloud counterparts. As a local replacement for GCS, we
chose MinIO [17], an open-source implementation of S3 that can be
easily run as a container. Google provides the containerized emula-
tor of the Pub/Sub message queue, a non-scalable, feature-restricted
version of the cloud Pub/Sub. It is compatible with the cloud version
and allows to test the core functionality of the message queue, save
for things like IAM authentication, for which the full Google Cloud
access is necessary.

Using Docker containers to satisfy developed applications’ re-
quirements for external services simplifies the development process
since it does not require every developer to provision them on the
infrastructure provider’s side. This also means that there are no
additional costs involved during development.

4.3 Reproducible CI/CD operations
GitHub Actions, used in our project as a CI/CD pipeline, execute
their workflows in the scope of ephemeral virtual machine workers
spawned for each job. The Linux workers are based on Ubuntu LTS
versions and have a plethora of preinstalled tools like Git or Docker.
Moreover, there exist multiple actions which prepare the worker for
running tasks like building, linting or testing by installing additional
utilities and toolchains like Java and Python. However, this requires
managing dependency versioning in multiple places and ensuring
that the developers are using the same version of the utilities as
it will be used when building the application. Moreover, suppose
there are tools which do not have a dedicated GitHub action that
installs them in the worker. In this case, it is necessary to write a
custom one, which creates additional elements to maintain.

Using the builder container in the CI/CD pipeline can solve these
problems by providing exactly the same execution environment for
the local development and pipeline jobs. Not only does it solve the
problem of managing the versions in multiple places, but it also
allows for all tools to behave the same and avoid situations like the
linter, reporting different places in the code on the developer’s ma-
chine than it does in the pull request’s pipeline. Since the workers

Figure 4: GitHub Actions build workflow. Each depicted job
is executed in the builder container, created from the builder
image.

already have Docker daemon installed, the only thing that has to be
done is to build the builder image and then run the operations like
linting or testing inside the spawned container. Moreover, it is pos-
sible to store the layers of the builder image in the GitHub Actions
cache by utilizing Docker BuildKit’s [21] caching, which speeds up
the subsequent workflow executions. This has the potential of being
even faster than using pre-made actions for installing utilities on
the runners, as they don’t have to be downloaded from the package
repositories on every job run and will merely get fetched from the
GitHub cache, alongside the rest of the builder image.

5 DISCUSSION
5.1 Trade-offs
A significant trade-off we made was choosing to use only services
that run on the cloud and a local machine or have good emulators
for running locally. This choice was made to remove the problem
of "this runs on my machine". Everything is containerized and runs
the same way: locally, in the CI/CD pipeline, and on the cloud. Also,
launching the whole system and its dependencies locally creates
an excellent opportunity for reproducible integration and end-to-
end tests. Since all the services are in the Docker containers, their
ephemeral nature ensures deterministic results of each test suite
execution - both on the developer’s machine and the CI/CD pipeline.
The trade-off is that we can thus also only use tools that support
this approach, which cannot always be done with cloud-native
proprietary solutions. However, we think that for most use cases,
the benefit of everything being consistent across every platform
far outweighs the drawbacks of a more limited choice of tooling
and a more complex initial setup.

One of the most important things in creating machine learning
applications is ensuring that the model created matches the real
world. We tried to achieve this by allowing the model to learn
from the users, giving it more data to learn from and, thus, higher
theoretical accuracy and relevancy in an ideal world. Our world is
usually not ideal, and adequately dealing with new data is difficult.
For example, a user might submit a tag that did not exist in the
system before. In this case, you have an interesting problem: do you
add the new tag or not? The system should not blindly accept all
the new tags a user submits since the user might, for example, make
an error while typing. There can also be tags that might be worded
differently but have the same meaning, with capital or non-capital
letters being an example. As seen from these small examples, a lot



Delft University of Technology, June 2022, Delft, The Netherlands Konrad Ponichtera, Krzysztof Baran, Călin Georgescu and Dan Plămădeală, Casper Henkes

of care must be taken when automatically creating new training
data for the service. Another problem with continuous learning is
that the original test data might eventually not be representative
anymore of the problem the application wants to solve. This makes
it more challenging to decide if a new model should be released or
not, as it is hard to have a good indication of how well the model is
performing.

5.2 Next steps
For future work, we would like to extend our design with new
features that would further help assess model performance: shadow
deployment and continuous improvement of test data. Shadow
deployments would allow us to provide the newer model to only
a fraction of the users and see how it performs in the real world
before it is fully released. It could be achieved by developing a
model version manager. The manager would be responsible for
determining which version of the model from the bucket is to be
used by the particular inference service. The monitoring would also
need to be slightly altered to include a dashboard for comparing
the performance of multiple models. Another idea that fits well
is the continuous improvement of test data. This is an extension
of the continuous learning idea, allowing to collect not only new
training data, but also the test one. However, it might not be a
good idea to have the test data updated fully automatically, as the
reason behind test data being treated as a trusted knowledge base
is often the fact that it was checked by a human expert. For this
reason, it could be beneficial to utilize distributed crowdsourcing
solutions like Amazon Mechanical Turk, to have a human validate
the newly collected test data before using it to determine learning
performance.

Another significant extension would be the inclusion of metric
alerts. Having metrics that monitor the model’s performance is
crucial when working with machine learning based systems. How-
ever, it might come to the point where the amount of metrics is
too large to be efficiently displayed on the dashboards. Configuring
alerts to send a notification whenever there are anomalies in the
system’s normal behavior might significantly simplify the job of
site reliability engineers and reduce their response time.

In addition to having Terraform provision the infrastructure,
it is possible to use it to remove certain cloud resources that it
created. Although it is not something that should be done with
production environments, it starts to make sense when used with
test and staging ones. In the cloud environment, the machines
equipped with the tensor processing units (TPUs) and other AI
accelerators tend to be much more expensive than the normal ones.
For this reason, it might be a good solution to utilize Terraform’s
targeted destroy functionality to remove specific resources that
generate huge costs - for example, Kubernetes cluster’s node pools
- without affecting the stateful elements like the buckets, volumes,
Pub/Sub queues or Kubernetes cluster control plane. Recreating the
node pool later will allow the control plane to reschedule all the
applications as they worked before. This process can be automated
by using GitHub Actions scheduled workflows - for example, by
removing the expensive resources before the weekends or outside
of working hours and recreating them later.

The inference services can be easily scaled horizontally to accom-
modate an arbitrarily large number of users; the learning service’s
scalability in the current system design is a potential bottleneck.
It is a singleton and the only consumer of the user feedback sug-
gestions. Although the asynchronous nature of the message queue
means that the user experience is not affected by this bottleneck
(e.g., the API response times are the same), it also means that for the
system under constant load, the number of new feedbacks in the
queue would grow faster than the learning service would be able to
consume. The only way to increase its throughput is by assigning
more resources to the machine on which the service is deployed
(vertical scaling). However, this cannot be done indefinitely, and
there are limits to how powerful the single machine can be, whether
the system is deployed on-premises or in the cloud. For this reason,
it would be beneficial to research the available federated learning
options to coordinate the learning between multiple machines.

6 SUMMARY
In the span of a month, we developed a fully functional machine
learning based system with production-grade continuous integra-
tion, delivery, and deployment pipelines. Not only does it imple-
ment the proof of concept machine learning pipeline, delivered as
a Jupyter notebook, but it also allows to collect feedback from the
users about the delivered predictions. This feedback is then used
for continuous learning to train the model further and potentially
increase its performance, which can be monitored thanks to ex-
posed metrics. The project also serves as a testing ground for the
concept of the builder image. It aims to further streamline the de-
veloper experience by providing a replicable runtime environment
on all the steps that precede the deployment, including but not
limited to linting, testing, and running the developed application.
Thanks to Terraform and containerization, an arbitrary amount of
environments can be deployed and maintained in a reproducible
fashion.

Considering that the initial plan was to build an extensible ma-
chine learning system with a strong emphasis on environment
replicability and ease of development, it is safe to say that the goal
was accomplished. The created project scaffolding serves as a solid
fundamental for developing production systems in Python with the
widely available machine learning frameworks and helps to avoid
problems that plague the ecosystem, like the interpreter version
discrepancies.

An important take-home message from the project is that envi-
ronment observability plays a significant role in modern software
engineering, whether applied to a simple web application or a com-
plicated machine learning system. There is always information that
the working application can expose as metrics, which might bring
valuable insight into the system’s behavior and help in making deci-
sions that guide the project’s evolution. Moreover, creating a project
scaffolding with emphasis on environment replicability is crucial
from the perspective of its long-term maintainability - even if it
might require extra effort in the initial stages of the development.



In pursuit of reproducible release engineering pipelines for extensible machine learning based systems Delft University of Technology, June 2022, Delft, The Netherlands

REFERENCES
[1] [n.d.]. Chart Releaser. https://github.com/helm/chart-releaser.
[2] [n.d.]. Project Jupyter. https://jupyter.org/.
[3] [n.d.]. Semantic Versioning 2.0.0. https://semver.org/.
[4] [n.d.]. Task. https://taskfile.dev/.
[5] Cloud Native Computing Foundation. [n.d.]. Helm. https://helm.sh/.
[6] Cloud Native Computing Foundation. [n.d.]. Kubernetes. https://kubernetes.io/.
[7] Cloud Native Computing Foundation. [n.d.]. Prometheus. https://prometheus.io/.
[8] Cloud Native Computing Foundation. [n.d.]. Pylint static code analyzer. https:

//pypi.org/project/pylint/.
[9] HashiCorp. [n.d.]. HashiCorp Configuration Language. https://github.com/

hashicorp/hcl.
[10] HashiCorp. [n.d.]. Terraform. https://www.terraform.io/.
[11] Docker Inc. [n.d.]. Docker. https://docker.com/.
[12] Google Inc. [n.d.]. Google Cloud. https://cloud.google.com/.
[13] Google Inc. [n.d.]. Google Cloud Pub/Sub. https://cloud.google.com/pubsub.
[14] Google Inc. [n.d.]. Google Cloud Storage. https://cloud.google.com/storage.
[15] Google Inc. [n.d.]. Google Cloud’s operations suite. https://cloud.google.com/

products/operations.

[16] Google Inc. [n.d.]. Google Kubernetes Engine. https://cloud.google.com/
kubernetes-engine.

[17] MinIO Inc. [n.d.]. MinIO. https://min.io/.
[18] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. 2018. The impact of nonde-

terminism on reproducibility in deep reinforcement learning. (2018).
[19] Joelle Pineau, Philippe Vincent-Lamarre, Koustuv Sinha, Vincent Larivière, Alina

Beygelzimer, Florence d’Alché Buc, Emily Fox, and Hugo Larochelle. 2021. Im-
proving reproducibility in machine learning research: a report from the NeurIPS
2019 reproducibility program. Journal of Machine Learning Research 22 (2021).

[20] GNU Project. [n.d.]. Make. https://www.gnu.org/software/make/.
[21] The Moby Project. [n.d.]. BuildKit. https://github.com/moby/buildkit.
[22] Sheeba Samuel, Frank Löffler, and Birgitta König-Ries. 2021. Machine Learning

Pipelines: Provenance, Reproducibility and FAIR Data Principles. In Provenance
and Annotation of Data and Processes, Boris Glavic, Vanessa Braganholo, and
David Koop (Eds.). Springer International Publishing, Cham, 226–230.

[23] Eric Breck Shanqing Cai Eric Nielsen Michael Salib D. Sculley. 2016. What’s your
ML Test Score? A rubric for ML production systems. 30th Conference on Neural
Information Processing Systems (2016).

[24] Bart van Oort. [n.d.]. mllint. https://github.com/helm/chart-releaser.
[25] Adam Wiggins. 2017. The Twelve-factor App. https://12factor.net/.

https://github.com/helm/chart-releaser
https://jupyter.org/
https://semver.org/
https://taskfile.dev/
https://helm.sh/
https://kubernetes.io/
https://prometheus.io/
https://pypi.org/project/pylint/
https://pypi.org/project/pylint/
https://github.com/hashicorp/hcl
https://github.com/hashicorp/hcl
https://www.terraform.io/
https://docker.com/
https://cloud.google.com/
https://cloud.google.com/pubsub
https://cloud.google.com/storage
https://cloud.google.com/products/operations
https://cloud.google.com/products/operations
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine
https://min.io/
https://www.gnu.org/software/make/
https://github.com/moby/buildkit
https://github.com/helm/chart-releaser
https://12factor.net/

	Abstract
	1 Introduction
	2 Related Works
	3 System design
	3.1 Implementation
	3.2 Deployment
	3.3 Pipeline extension
	3.4 Metrics
	3.5 Continuous integration, delivery and deployment
	3.6 The concept of builder image
	3.7 Build task management

	4 Implications
	4.1 Production-ready machine learning system
	4.2 Environment replicability
	4.3 Reproducible CI/CD operations

	5 Discussion
	5.1 Trade-offs
	5.2 Next steps

	6 Summary
	References

