
The effects of Local Search on Random Key encoding schemes for
the Traveling Salesperson Problem

Calin Georgescu
Delft University of Technology

Delft, The Netherlands
C.A.Georgescu@student.tudelft.nl

Chris Bras
Delft University of Technology

Delft, The Netherlands
C.S.Bras@student.tudelft.nl

Zhi-Yi Lin
Delft University of Technology

Delft, The Netherlands
Z.Lin-6@student.tudelft.nl

ABSTRACT
Differential evolution (DE) is a popular and powerful optimization
tool used by practitioners for various problems, both continuous
and discrete. Using an originally real-valued algorithm like DE to
discrete, combinatorial optimization problems requires an encoding
from the solution space to the continuous space and a mapping
from the real-valued encoding back to the solution domain. Random
Keys (RK) encodings provide a powerful yet efficient method of
performing these tasks while preserving the permutation property
required by many problems. In this research, we consider three
general-purpose RK encodings and enhance their performance by
using Local Search (LS) heuristics. As a benchmark, we use the
Traveling Salesperson Problem (TSP) and study two LS variation
operators: the well-known 2-opt and a novel node-exchange-based
operator 2-ne that alters the solution more strongly than its coun-
terpart. We investigate the effects of LS on the DE algorithm in
terms of optimal parameter settings, solution quality, and impact
of the LS search budget, to build a comprehensive picture of the
interaction between the search heuristics and the RK encodings.
The results indicate that both heuristics behave well in similar areas
of parameter space and that 2-opt tends to perform better than
2-ne because it introduces less perturbance. We also show that
both approaches scale linearly with the budget used for LS in terms
of runtime and that 2-ne is the more expensive heuristic, which
may also benefit less from increases in search budget.

1 INTRODUCTION
DE is one of the best studied evolutionary algorithm paradigms in
the domain of continuous optimization tasks, with applications in
operations research, engineering tasks, physics, and biology [4, 13].
DE has many appealing features, including the relative ease of
implementation and significant potential for parallelization, that
led to it becoming one of the most widely adopted solutions for
difficult real-value multi-dimensional optimization problems such
as Fuzzy Job Scheduling [7] and Economic Load Dispatch [11].

The effectiveness of DE has led to extensions in the domain of
discrete applications. Combinatorial optimization (CO) problems
that can be solved with the help of DE include shop scheduling [12,
18], graph colouring [6, 9], linear ordering problem [1, 2] and TSP
[5, 8, 16]. This work focuses on one of the most popular problems
in theoretical and algorithmic computer science: TSP. The choice
of this benchmark is motivated by its applicability in real-world
optimization settings and its structural properties that enable for
efficient and explainable local search heuristics to be applied.

For DE to be effectively applied to structured CO problems, some
mapping must be defined between the real-valued search space and

the discrete problem variables. One such mapping is the RK en-
coding. In this work, we benchmark three RK encoding strategies:
the standard RK was first introduced in 1994 [3], as well as two
RK encodings proposed by Kromer et al. [8] that seek to reduce
the volume and dimensionality of the search space, respectively.
This choice is motivated by the improvements the authors found
in comparing the novel encodings with the original for TSP. In ad-
dition, by comparing different encodings that differently approach
the continous search space, we aim to obtain more insightful and
generalizable results.

In this work, we propose an extension of the RK-based DE algo-
rithm that focuses on introducing effective local search heuristics
to improve the performance of the baselines. To do this, we use
the standard 2-edge exchange heuristic, also known as 2-opt, and
introduce a novel local search heuristic, 2-node exchange (2-ne),
that shares many of the advantageous properties of 2-opt while
introducing more perturbance in the search space.

These choices are motivated by both empirical and analytical fac-
tors. Empirically, the DE algorithm using the standard RK encoding
has been observed to converge slowly when the variation of solu-
tions is small, and converge erratically when variation increases.
This suggests that a small variation coupled with iterative improve-
ments of the intermediate solution might prove extremely effective.
Theoretically, LS heuristics have been shown to produce state-of-
the-art results for TSP in many Genetic Algorithm (GA) settings
[10, 17]. However, the behavior of LS heuristics in the RK-based
encoding space has not yet been studied. The goal of this research
is to identify the effects of selected LS heuristics on the three RK-
based continuous search spaces in a DE framework. To achieve this
goal, we aim to answer the following research questions:

RQ1. Which combinations of parameters provide the most efficient
and robust performance for the novel RKLS-based algorithms?

RQ2. How does the introduction of LS into RK encodings influence
the performance of the DE algorithm?

RQ3. What effect does the budget of the LS subroutine have on the
performance of the RK-based DE algorithm?

The remainder of the paper is structured as follows: section 2
provides the essential background for the implementation of our
algorithm. section 3 introduces and explains our proposed methods.
The experimental setup and the results of the empirical study on
selected instances are shown and analyzed in section 4.

2 BACKGROUND
This section provides the necessary background for the key con-
cepts involved in the design, decision making, and implementation
processes carried out in this work.

Calin Georgescu, Chris Bras, and Zhi-Yi Lin

2.1 Traveling Salesperson Problem
TSP is one of the most famous problems in theoretical computer
science, because of its contrastingly simple formulation and difficult
computational nature. The problem considers a salesperson who
wants to travel from their home and visit each city in a set of size 𝑁
before returning to the starting point, in the shortest route possible.

More formally, TSP ismodelled as aweighted graph𝐺 = (𝑉 , 𝐸,𝑤)
where the set of vertices 𝑉 contains all the cities the salesperson
needs to visit and the edge set 𝐸 contains all the connections be-
tween the cities, together with their distance (also referred to as
cost or weight), given by the function 𝑤 : 𝐸 → R. A solution
to TSP is a permutation 𝜋 of the set 𝑉 and its cost is given by
𝑐 (𝜋) = ∑𝑛−2

𝑖=0 𝑤 (𝑣𝑖 , 𝑣𝑖+1) +𝑤 (𝑣𝑛−1, 𝑣0). TSP is a minimization prob-
lem,where the goal is to find the optimal permutation: argmin𝜋 𝑐 (𝜋).
The computational complexity of TSP stems from the number of
feasible solutions present in search space. In a symmetric setting,
an enumeration-based algorithm would require O((|𝑉 | − 1)!) oper-
ations to generate and evaluate all possible solutions.

More nuanced versions of TSP exist, such as variations that
introduce asymmetric weights between cities, but in this research
we focus on the most commonly occurring version, using datasets
from TSPLIB [14].

2.2 Random Key Encodings
Random key encodings are efficient and straightforward mappings
for permutation representations, used primarily in real-valuedmeta-
heuristic algorithms. First proposed by Bean et al. [3] in 1994, RK
encodings have since been extended and specialized for specific
use cases, with use cases in both real-valued and combinatorial
optimization problems. More formally, a RK encoding is a tuple
(x, 𝑑𝑒𝑐), with x ∈ [0, 1]𝑙 and 𝑑𝑒𝑐 the decode function used to trans-
form x to a permutation 𝜋 in the problem space by sorting x in
non-increasing order along its dimension. Equation 1 shows an
example of the decoding process for a 4-dimensional vector x.

x =< 0.70, 0.31, 0.52, 0.23 >

𝜋 = 𝑑𝑒𝑐 (x)
= 𝑠𝑜𝑟𝑡≤ < 0.70, 0.31, 0.52, 0.23 >

=< 3, 1, 2, 0 >

(1)

A downside of this approach is the computational overhead in-
troduced by the sorting rquired to map from the RK-space to the
permutation space. Even so, key advantage of the RK encoding is
that enforces the permutation property on offspring generated via
traditional crossover techniques in many EAs. This circumvents
the problem of repairing or discarding invalid (non-permutation)
offspring in direct encodings. However, the search space of RK en-
codings suffers from some redundancies: since the final permuation
is decided by the order of the random key values, many different
RK encodings may mapped to the same solution [8]. As a result, the
search algorithm might spend much time on the RK search space
without introducing new solutions.

To mitigate this problem, n-ball RK encoding and reduced RK
encoding are proposed [8]. The former constrains the n-dimensional
search space into a region of an n-ball to reduce the volume of the
search space by dividing each solution that falls outside of this

space by its norm and adding Gaussian noise. The latter reduces the
dimensionality of the search space to 𝑛 − 1 by deriving the position
the the 𝑛𝑡ℎ dimension by the negative sum of all other dimensions.

2.3 Differential evolution
Following the general structure of GAs, DE is a real-valued population-
based search algorithm proposed by [15]. DE iteratively improves
the solutions in the population using evolutionary operations, in-
cluding mutation, crossover, and selection. The main difference
between DE and a general GA is that the cross over operation is
operated on the mutated offsprings.

DE generates new solutions by first linearly combining the se-
lected solutions in the current population, at the same time, DE
makes sure that the offsprings are not randomly generated, and the
population will gradually move toward regions with better fitness
scores. Then, the cross over operation is applied to the mutated
offspring and a solution in the current population to decide which
genes will be pass on to the next generation. In this work we fo-
cus on the standard version of DE, often referred to as DE/rand/1.
This flavor of DE is governed by two configurable parameters: the
crossover probability 𝑐 , and the factor 𝑓 that influence how much
of the original genotype is kept and how much the variation oper-
ator influences the dimensions of the solutions subject to change,
respectively.

Since DE has few assumptions on the underlying optimization
problems, it is an efficient and simple global optimizer for a wide
variety of continuous optimization problems. However, the perfor-
mance of DE is influenced by its control parameters, such as the
population size, the crossover operator, the mutation factor, and
the selections of base vector and difference vectors. Therefore, DE’s
control parameters need to be adjusted for its target problem.

3 PROPOSED IMPROVEMENTS
To enhance the baseline RK-based DE algorithms, we propose two
local search heuristics. We chose these improvements based on the
empirical observation of irregular behaviour of the DE evolutionary
algorithm for several TSP instances. In particular, we noticed the
convergence of the solution was rather slow when parameters did
not provide sufficient variance, and unreliable on instances where
the DE variation operator did not allow for promising areas of the
search space to be consistently explored. We hypothesize that this
weakness of the baseline is caused by the incompatibility of the DE
operator with the TSP problem structure: changes in the real-valued
search space may be too small to cause a change in the encoding
and thus take longer to converge, or may be too strong to maintain
good substructures in the population.

To remedy this issue, we turn to local search heuristics to alter
the solutions during recombination. LS subroutines used in more
complex EAs have been shown to produce state of the art results
for many problems whose structures can be effectively exploited by
these strategies, including TSP. We hypothesize that this would be
especially effective in an RK-based setting because of two main rea-
sons. First, the local search subroutine could introduce the variation
required by the algorithm to alter the solution, when mutation in
the encoding space is not sufficiently strong. Second, TSP has struc-
tural properties that allow solutions altered by certain LS operators

The effects of Local Search on Random Key encoding schemes for the Traveling Salesperson Problem

to be evaluated in constant time, which makes LS efficient enough
to be used a subroutine as part of the recombination operator.

To this end, we implemented two TSP-specific local search heuris-
tics: the standard 2-opt operator that swaps two edges in the tour
to create a new solution and a novel operator which we call 2-node
exchange (2-ne) that swaps two nodes in the tour and their adjacent
edges.

Figure 1: A RK-based TSP example. The real numbers are the
random keys for each city.

3.1 2-opt
The 2-opt local search is originally proposed by [5] to solve TSP
problem. The main idea is to find an improvement, a new solution
with smaller traveling distance, in the neighborhood by switching
two edges. The search is repeated until there is no better solutions
in the neighborhood or a local search budget has beenmet. As above
mentioned, the solution evaluation in LS for TSP can be done in
constant time using partial evaluation. This is because we only need
to calculate the distance changes from those reconnected edges.
In 2-opt, only two edges are reconnected, so the new traveling
distance can be calculated as

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑛𝑒𝑤 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑟𝑔 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒𝑖) − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒 𝑗)
+ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒𝑖′) + 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑒 𝑗 ′)

, where 𝑒𝑖 and 𝑒 𝑗 are the selected edges and 𝑒𝑖′ and 𝑒 𝑗 ′ are their
reconnected counterparts.

To further demonstrate how to apply 2-opt on a RK-based TSP,
an example is present in Figure 1, which shows a route from A to
H, whose visiting order is decided by the random key values that
are shown next to the vertices.

If 𝑒𝐵𝐶 and 𝑒𝐹𝐺 are selected, these two edges are removed and
𝑒𝐵𝐹 and 𝑒𝐶𝐺 are built. Knowing this, we can calculate the new
traveling distance using partial evaluation, and check if the new
distance is smaller than the current best one. If so, the random key
vector needs to be modified to create a new route. This can be done
by changing the random key values of F and C. However, to make
sure all the other connections remain the same, the random keys
between F and C also need to be re-ordered as shown in Figure 2.
In implementation, we can use the entries of the solution, which
is in discrete space, as the index to retrieve the corresponding
random keys. Therefore, the random key re-order can be achieved
by creating one forward index iterator starting from the first edge’s
tail, and the other one backward starting from the second edge’s
head, and then swapping the retrieved random keys until the two
iterators meet in the middle. In Figure 2, the random keys of D and
C, and E and D are swapped. Note that the visiting order between F
and C is changed, but the traveling distance is the same. The 2-opt
operation on RK-based TSP can be summarized in Algorithm 1.

Figure 2: 2-opt on the RK-based TSP example in Figure 2. The
changed random keys are explicitly denoted. Gray: removed
edges. Red: new edges. Blue: edges that only change direc-
tions.

Algorithm 1: 2-opt operation on RK-based TSP
Input :A TSP graph with defined distance on edges 𝑒 ,

a route solution 𝑠𝑜𝑙 ,
the route’s RK encoding 𝑟𝑘𝑠 ,
the route’s traveling distance 𝑑𝑖𝑠𝑡 ,
the search budget 𝐵

Output :A route solution 𝑠𝑜𝑙 ,
the route’s RK encoding 𝑟𝑘𝑠 ,
the route’s traveling distance 𝑑𝑖𝑠𝑡

1 𝑁 = 0
2 while 𝑁 < 𝐵 do
3 Randomly select two nodes, 𝑖 and 𝑗 , where

0 <= 𝑖 < 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑜𝑙)
4 Identify two edges:
5 𝑒0 = 𝑒 [𝑖 − 1, 𝑖], 𝑒1 = 𝑒 [𝑗, 𝑗 + 1]
6 Reconnect two edges:
7 𝑒0′ = 𝑒 [𝑖 − 1, 𝑗], 𝑒1′ = 𝑒 [𝑖, 𝑗 + 1]
8 Partial evaluation:
9 𝑑𝑖𝑠𝑡𝑛𝑒𝑤 = 𝑑𝑖𝑠𝑡−𝑑𝑖𝑠𝑡 [𝑒0]−𝑑𝑖𝑠𝑡 [𝑒1] +𝑑𝑖𝑠𝑡 [𝑒0′] +𝑑𝑖𝑠𝑡 [𝑒1′]

10 if 𝑑𝑖𝑠𝑡𝑛𝑒𝑤 < 𝑑𝑖𝑠𝑡 then
11 𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡𝑛𝑒𝑤

12 Reorder 𝑟𝑘𝑠 between 𝑠𝑜𝑙 [𝑖] and 𝑠𝑜𝑙 [𝑗]
13 Reverse the order of 𝑠𝑜𝑙 from 𝑖 to 𝑗

14 𝑁 = 𝑁 + 1
return :𝑠𝑜𝑙 , 𝑟𝑘𝑠 , and 𝑑𝑖𝑠𝑡

3.2 2-ne
We proposed a novel LS strategy called 2-ne, where fewer con-
straints are imposed and hence introduce higher variation. In 2-ne,
it is the node swapping that triggers the reconnecting of the edges,
so one pair of node will reconnect four edges, which are the two
nodes’ the entering paths and leaving paths.

The example in Figure 1 is used to demonstrate 2-ne on RK-based
TSP. First, two nodes are randomly selected, and then the resulting
reconnected edges are identified for partial evaluation. In Figure 3, F
and C are selected, and the four reconnected edges are identified as
shown in the figure. If the new distance is better, the random key of
the two selected nodes are swapped. Unlike 2-opt, the visiting order
between the selected two nodes is not changed. Only the visiting
order of the selected two nodes are swapped. The implementation is
similar to 2-opt, the entries of the solution are used as the index to

Calin Georgescu, Chris Bras, and Zhi-Yi Lin

retrieve the corresponding random keys for swapping. Algorithm
2 summarizes the 2-ne operation on RK-based TSP.

It can be seen that in each iteration, four edges are reconnected,
which makes the new solutions from 2-ne differ more compared to
those from 2-opt, where only two edges are reconnected. For the
same reason, the computation of 2-ne is more expensive than 2-opt
because the distance changes are from eight components, four for
edge removal and the other four for edge connecting. Thus, the
partial evaluation of 2-ne could take twice as much time as 2-opt.
Although in 2-ne, there is no need to re-order the random keys, the
operation reduction is small compared to the additional effort to
calculate the traveling distances.

Figure 3: 2-ne on the RK-based TSP example in Figure 1. The
changed random keys are explicitly denoted. Gray: removed
edges. Red: new edges.

Algorithm 2: 2-ne operation on RK-based TSP
Input :A TSP graph with defined distance on edges 𝑒 ,

a route solution 𝑠𝑜𝑙 ,
the route’s RK encoding 𝑟𝑘𝑠 ,
the route’s traveling distance 𝑑𝑖𝑠𝑡 ,
the search budget 𝐵

Output :A route solution 𝑠𝑜𝑙 ,
the route’s RK encoding 𝑟𝑘𝑠 ,
the route’s traveling distance 𝑑𝑖𝑠𝑡

1 𝑁 = 0
2 while 𝑁 < 𝐵 do
3 Randomly select two nodes, 𝑖 and 𝑗 , where

0 <= 𝑖 < 𝑗 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑜𝑙)
4 Identify four edges:
5 𝑒0 = 𝑒 [𝑖 − 1, 𝑖], 𝑒1 = 𝑒 [𝑖, 𝑖 + 1], 𝑒2 = 𝑒 [𝑗 − 1, 𝑗],

𝑒3 = 𝑒 [𝑗, 𝑗 + 1]
6 Reconnect four edges:
7 𝑒0′ = 𝑒 [𝑖 − 1, 𝑗], 𝑒1′ = 𝑒 [𝑖, 𝑗 + 1], 𝑒2′ = 𝑒 [𝑗 − 1, 𝑖],

𝑒3′ = 𝑒 [𝑗, 𝑖 + 1]
8 Partial evaluation:
9 𝑑𝑖𝑠𝑡𝑛𝑒𝑤 = 𝑑𝑖𝑠𝑡 − 𝑑𝑖𝑠𝑡 [𝑒0] − 𝑑𝑖𝑠𝑡 [𝑒1] − 𝑑𝑖𝑠𝑡 [𝑒2] −

𝑑𝑖𝑠𝑡 [𝑒3] + 𝑑𝑖𝑠𝑡 [𝑒0′] + 𝑑𝑖𝑠𝑡 [𝑒1′] + 𝑑𝑖𝑠𝑡 [𝑒2′] + 𝑑𝑖𝑠𝑡 [𝑒3′]
10 if 𝑑𝑖𝑠𝑡𝑛𝑒𝑤 < 𝑑𝑖𝑠𝑡 then
11 𝑑𝑖𝑠𝑡 = 𝑑𝑖𝑠𝑡𝑛𝑒𝑤

12 Swap 𝑟𝑘𝑠 [𝑠𝑜𝑙 [𝑖]] and 𝑟𝑘𝑠 [𝑠𝑜𝑙 [𝑗]]
13 Swap 𝑠𝑜𝑙 [𝑖] and 𝑠𝑜𝑙 [𝑗]
14 𝑁 = 𝑁 + 1

return :𝑠𝑜𝑙 , 𝑟𝑘𝑠 , and 𝑑𝑖𝑠𝑡

(a) Heatmap level 1 grid search results
for RK on berlin52.

(b) Heatmap level 2 grid search results
for RK on berlin52.

Figure 4: Results of two-level grid search for RK on berlin52.

4 EXPERIMENTS
To gain insight into the effects of LS on the random key encodings,
we carried out an empirical study on four instances selected from
the TSPLIB dataset [14]. The algorithms were implemented in the
Python 3.10 programming languages, and the computational exper-
iments were carried out on a 2014 MacBook Pro running on a Intel
Core i7 processor at 2.5 GHz, with 16 GB of RAM. We consider 9
permutations of the encodings and their (non-)LS variants: each of
RK, nbRK, and rRK were paired together with no local search, 2-ne
based local search (referred to as LS) and 2-opt based local search
(referred to as LS2OPT). Subsection 4.1 describes the parameter
search procedure executed to answer RQ1. Subsection 4.2 focuses
on a qualitative analysis of the best solution found by the algo-
rithms to answer RQ2. Finally, subsection 4.3 analyses the effect
of the local search budget on the runtime and solution quality of
the algorithm, as put forward in RQ3. To ensure reproducibility, we
make the code used for the implementation of both the algorithms
and the experiments available as a supplement to this document.

4.1 Parameters
To ensure both fairness between the compared algorithms and
good performance on the tested instances, the 𝑐 and 𝑓 parameters
of the DE recombination were tuned using two-level grid search.
This procedure was performed on the burma14 and the berlin52
instances. However, because of the fast convergence of the LS-based
configurations on smaller problems, only the results for berlin52
were considered the final choice. This problem was chosen as a
representative sample from our 4-problem dataset based on its
topology and size. We argue that this is a reasonable approximation
to make because the goal of this experiment is not to find optimal
parameters for each setting, but rather to discover generally good
parameters for all instances, in a way that provides insight into the
behavior of the algorithm.

For this experiment, the search space was discretized into 11
equidistant points on the scale of [0.01, 0.99] and [0, 2] for the 𝑐
and 𝑓 parameters of the standard DE variation operator, respec-
tively. 5 iterations of 10 generations each were performed for each
algorithm for all 121 combinations of the two parameters, and the
mean value of the final solution was considered as an indicator
of the quality of the solution. To further improve the quality of
the parameters, the search procedure was extended with a sec-
ond level. The best parameter settings were selected from the first

The effects of Local Search on Random Key encoding schemes for the Traveling Salesperson Problem

Table 1: Experimental Parameters obtained via two-level grid
search.

Algorithm 𝑐 𝑓

RK 0.11 1.84
RKLS 0.89 0.08

RKLS2OPT 0.91 0.08
nbRK 0.95 1.82
nbRKLS 0.77 0.11

nbRKLS2OPT 0.91 0.08
rRK 0.72 0.58
rRKLS 0.55 0.09

rRKLS2OPT 0.55 0.09

instance, and the space was discretized again in the square that
centers around the best combination. When boundaries were hit,
the space was extended in the opposite direction. By repeating the
same procedure across all algorithms, fairness in the parameter
selection procedure is assured.

A sample of the results of this experiments that focuses on the
RK configuration is visualized in Figure 4. The quality of the re-
sult is measured proportionately to all other results in the search.
Since TSP is a minimization problem, lower results (visualized here
with darker colors) are better. Subfigure (a) shows the results for
the first level (coarser) grid search, and subfigure (b) displays the
results of the second level. The best results for both procedures
are highlighted in blue. The results indicate the importance of this
experiment in ensuring fairness across all algorithms: at both levels,
the mean best solution varies by between 9 and 12 pp. between the
best and worst pairs of parameters.

For reproducibility purposes, the final parameters selected by
the grid search procedure are given in Table 1. Of note is the level of
similarity of the preferences of LS-based algorithms. The 𝑓 parame-
ter is consistently in the range [0.08, 0.11] for all LS variants, which
is a much tighter interval than for the baseline counterparts. These
findings support our hypothesis that LS might be most beneficial
for less perturbative DE recombination operators. Moreover, the
higher values of the 𝑓 parameter (1.84, 1.82, and 0.58) for the base-
line RK encodings also support our hypothesis that the standard
version of the algorithm might benefit from recombination that
more strongly affects the solutions.

4.2 Solution Quality
To assess and compare the local search heuristics for the RK encod-
ings, we collected data on four instances of real-world problems
from TSPLIB. These instances are, in increasing size: dantzig42,
att48, eil51, and berlin52. We selected these problems because
of their topology, which does not show any outstanding pattern
that might not be generalizable to most other instances and because
their size allow for sufficiently robust experimentation within the
constraints of this research. The parameters for these experiments
laid out in Table 1. Tournament selection of size 2 was used for all
experiments, and each configuration was run 10 independent times.
Each run consists of 50 generations.

Table 2: Statistical significance analysis of the nine algo-
rithms on berlin52 using the Wilcoxon test. The alterna-
tive hypothesis of the test was that the row-configuration
had a lower objective value for its best solution than the
column-configuration. Significant results (with 𝑝 < 0.05 are
highlighted in bold text.

RK RKLS RKLS
2OPT

nbRK nbRKLS nbRKLS
2OPT

rRK rRKLS rRKLS
2OPT

RK - 1.000 1.000 0.722 1.000 1.000 0.032 1.000 1.000
RKLS 0.001 - 1.000 0.001 0.539 1.000 0.001 0.014 1.000

RKLS2OPT 0.001 0.001 - 0.001 0.001 0.216 0.001 0.001 0.010
nbRK 0.312 1.000 1.000 - 1.000 1.000 0.001 1.000 1.000
nbRKLS 0.001 0.500 1.000 0.001 - 1.000 0.001 0.161 1.000

nbRKLS2OPT 0.001 0.001 0.812 0.001 0.001 - 0.001 0.001 0.014
rRK 0.976 1.000 1.000 1.000 1.000 1.000 - 1.000 1.000

rRKLS 0.001 0.990 1.000 0.001 0.862 1.000 0.001 - 1.000
rRKLS2OPT 0.001 0.001 0.993 0.001 0.001 0.990 0.001 0.001 -

The results of the experiment are highlighted in Figure 5. Each
row of subfigures displays the results of a "family" of algorithms on
the four instances, and each column contains the results of all algo-
rithms for one of the benchmark problems. A clear trend is visible
among almost all configurations. The baseline algorithms perform
significantly worse than their LS-enriched counterparts in all but
one instance, where all three rRK strategies perform comparably
on the dantzig42 problem. The LS heuristic algorithms follow the
same pattern of convergence across all 12 comparisons. While the
2-ne version vastly outperforms the baseline, it always falls short
of its 2-opt counterpart. However, this trend is only apparent af-
ter more than 25 percent of the number of evaluations performed
in total: both LS versions perform indistinguishably during the
early stages of the search. This indicates that the less aggressive
changes introduced by 2-opt might be better suited for finding
improvements during the intermediate and late stages of the search
algorithm because it tends to check solutions that are "closer" to
the original offspring than 2-ne.

Statistical analysis was performed on the results to determine
the significance of the differences between the algorithm families.
We used the standard Wilcoxon test for this purpose. The test
compares two sets of similar samples and computes the 𝑝-value of
the difference between the two being symmetrical around zero. It
is a non-parametric version of the paired T-test. We carried out the
the pair-wise Wilcoxon test for all algorithms, the results of which
are shown in Table 2, for the representative berlin52 problem.

The tests reveal several key insights. First, when considering the
baseline algorithms, both RK and nbRK outperform rRK. We believe
this is because of the limitations imposed by the rRK encoding on
the search space, which constraints the solution’s neighbourhood
structure. When considering the LS-enriched variants, RKLS2OPT
stands out as the best performer, showing significantly better re-
sults than all counterparts, except for nbRKLS2OPT, which comes in
second. RKLS and nbRKLS are the weakest performers of the LS algo-
rithms, and only show significantly better results than the non-LS
baselines.

4.3 Effects of LS Search Budget
To analyze the effect of the search budget on the best objective value
achieved with the LS versions of the algorithms, we compared the

Calin Georgescu, Chris Bras, and Zhi-Yi Lin

(a) RK comparison on dantzig42. (b) RK comparison on att48. (c) RK comparison on eil51. (d) RK comparison on berlin52.

(e) nbRK comparison on dantzig42. (f) nbRK comparison on att48. (g) nbRK comparison on eil51. (h) nbRK comparison on berlin52.

(i) rRK comparison on dantzig42. (j) rRK comparison on att48. (k) rRK comparison on eil51. (l) rRK comparison on berlin52.

Figure 5: Comparison for the three RK-based encodings with the two LS heuristics on four TSPLIB instances.

6 configurations in terms of fitness of the best solution and average
time taken to process one generation. The former metric measures
the improvement that an increased budget may bring, while the
latter assesses the computational cost incurred to do so. The search
budget was varied from 5 to 50 with increments of 5 per run. Each
run consists of 20 generations. The experiments were run on the
berlin52 instance.

Figure 6 displays the best fitness achieved by each configuration
as a function of the search budget. As expected, increasing the
search budget significantly increases the quality of the best solu-
tion for all algorithms. However, the increase in solution quality
differs across the two LS implementation. 2-ne based algorithms
perform worse and improve their solutions less than their 2-opt
counterparts. This shows further evidence against our hypothesis
that more perturbative LS subroutines can increase the performance
of the EA. When considering the 2-opt and 2-ne variants in iso-
lation, there is no significant difference between the trends of the
three RK-based encodings. The gain is initially superlinear, but
the improvement incrementally diminishes as the search budget
increases. For both LS configurations, the improvement starts to
trend towards sublinearity for budgets of 25 and over.

To compare which version benefits the most from a higher bud-
get, a first degree polynomial was fitted to the results. The slope of
the line can than be used to determine which algorithms benefit the
most from a higher budget.Table 3 shows that the 2-opt versions

of the algorithms have a steeper slope than their non 2-ne counter-
parts. On average, the 2-opt cofniguration has 0.74 times steeper
slope than its 2-ne counterpart, suggesting that 2-opt scales better
with a higher LS budget.

Figure 7 contains a visualization of the average cost of a gener-
ation as a function of the search budget. The results indicate that
all variants scale linearly with the search budget. As hypothesized
in subsection 3.2, 2-ne based algorithms are have a higher com-
putational cost than the standard 2-opt. We believe that this is
caused by the additional overhead required by performing mem-
ory lookups for the costs of more edges at each LS iteration. The
checking of several edge cases (such as swapping two nodes adja-
cent nodes) may also impact the runtime performance of the 2-ne
variants. When considering the different encodings, rRK stands out
as the most expensive for both LS heuristics, while the difference
between RK and nbRK is negligeable. This shows that the additional
step of computing the summation of the 𝑙 − 1 dimensions of the
encoding is a significant overhead and should be considered when
choosing an encoding.

5 DICUSSION AND CONCLUSIONS
In this study, we investigated the performance of RKLS-based DE
algorithms for TSP. Three different RK encoding methods, RK, nbRK,
and rRK are considered to explore the impact of using RKs with less
search space redundancy. To combat the observed inefficiency of
using DE for TSP, two LS heuristics, 2-opt and 2-ne, are applied.

The effects of Local Search on Random Key encoding schemes for the Traveling Salesperson Problem

Figure 6: Fitness of the algorithms as a function of budget,
on berlin52.

Figure 7: Runtime of the algorithms as a function of LS bud-
get, compared on berlin52.

Table 3: Estimated slope and intercept for fitness versus bud-
get data.

Algorithm Slope Intercept

RKLS -127.1 18143
rRKLS -131.9 18411
nbRKLS -109.3 17666
RKLS2OPT -172.0 18277

nbRKLS2OPT -154.1 17790
rRKLS2OPT -167.1 18563

Our findings after analyzing the results from experiments focusing
on different aspects are described as below.

First, under the non-LS setting, the performance of RK and nbRK
are similar, while rRK performs the worst. However, in LS-based al-
gorithms, using nbRK and rRK does not result in better performance.
We suspect that the redundancy reduction matters more when the
search space is much larger. Thus, the improvement from nbRK and
rRK might be more significant in instances on a larger scale.

Second, LS heuristics are capable of introducing informative
solution variations to TSP. This can be found from the results of
optimal parameter search, where LS-based algorithms prefer less
perturbative DE operators while non-LS-based algorithms benefit
from a higher degree of re-combinations. The solution quality ex-
periment also shows that LS-based methods can evolve toward a
better search space while the standard algorithms fail to reach a
better search region after almost half of the lifetime of LS-based
algorithms.

Third, compared to 2-ne, 2-opt can move toward a better search
region faster. This is because the higher variation of the solutions
found by 2-ne could prevent the search algorithm from finding a
better solution within a smaller neighborhood, which is especially
crucial in the later stage since the algorithm is meant to exploit the
existing solutions as much as possible.

Last, the search budget is positively correlated to both the run-
time per generation and the performance of LS-based algorithms.
Between the two LS heuristics, increasing the search budget in-
troduces more improvements to 2-opt implementations in less
additional runtime. This result aligns with those found in the so-
lution quality experiment because the higher variation of 2-ne
prevents it from exploring a better search region when search is
about to converge. As such, it cannot significantly increase its per-
formance over 2-opt more even with more search budget. Finally,
the results show no specific trends in the algorithm improvements
for different RK encodings.

In the future, several research directions can be explored to imr-
pove RK-based encodings using LS. One option is the development
of a RK-specific LS heuristic that perturbs the solution with re-
gard to the RK-space rather than the solution space. A specilized
continuous-space heuristic might prove beneficial by directly coun-
tering the shortcomings of DE in the TSP setting, without alter-
nating the variation between the two domains. In addition, the
development of a TSP-specific RK variant that exploits problem-
specific knowledge (such that smaller variation like that introduced
like 2-opt is preferable over stronger changes) might also be a
promising direction to explore.

In conclusion, running RKLS-based TSP using DE on instance
dantzig42, att48, eil51, and berlin52, we do not observe sig-
nificant improvement from different RK encoding methods. With
the addition of LS heuristics, the performance is improved signifi-
cantly since LS can reduce the inefficiency of using DE algorithm
for TSP. Furthermore, small but effective variations are important
in the later search stage, which explains the better performance
discrepancy between 2-opt over 2-ne.

Calin Georgescu, Chris Bras, and Zhi-Yi Lin

REFERENCES
[1] Marco Baioletti, AlfredoMilani, and Valentino Santucci. 2015. Linear ordering op-

timization with a combinatorial differential evolution. In 2015 IEEE International
Conference on Systems, Man, and Cybernetics. IEEE, 2135–2140.

[2] Marco Baioletti, Alfredo Milani, and Valentino Santucci. 2020. Variable neigh-
borhood algebraic differential evolution: An application to the linear ordering
problem with cumulative costs. Information Sciences 507 (2020), 37–52.

[3] James C. Bean. 1994. Genetics and RandomKeys for Sequencing andOptimization.
(1994).

[4] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex opti-
mization. Cambridge university press.

[5] Georges A Croes. 1958. A method for solving traveling-salesman problems.
Operations research 6, 6 (1958), 791–812.

[6] Iztok Fister and Janez Brest. 2011. Using differential evolution for the graph
coloring. In 2011 IEEE Symposium on Differential Evolution (SDE). IEEE, 1–7.

[7] Da Gao, Gai-Ge Wang, and Witold Pedrycz. 2020. Solving fuzzy job-shop sched-
uling problem using DE algorithm improved by a selection mechanism. IEEE
Transactions on Fuzzy Systems 28, 12 (2020), 3265–3275.

[8] Pavel Krömer, Vojtěch Uher, and Václav Snášel. 2021. Novel Random Key En-
coding Schemes for the Differential Evolution of Permutation Problems. IEEE
Transactions on Evolutionary Computation 26, 1 (2021), 43–57.

[9] Shadi Mahmoudi and Shahriar Lotfi. 2015. Modified cuckoo optimization algo-
rithm (MCOA) to solve graph coloring problem. Applied soft computing 33 (2015),
48–64.

[10] Peter Merz and Bernd Freisleben. 1997. Genetic local search for the TSP: New
results. In Proceedings of 1997 Ieee International Conference on Evolutionary Com-
putation (Icec’97). IEEE, 159–164.

[11] Nasimul Noman and Hitoshi Iba. 2008. Differential evolution for economic load
dispatch problems. Electric power systems research 78, 8 (2008), 1322–1331.

[12] Quan-Ke Pan, Ling Wang, and Bin Qian. 2009. A novel differential evolution
algorithm for bi-criteria no-wait flow shop scheduling problems. Computers &
Operations Research 36, 8 (2009), 2498–2511.

[13] Millie Pant, Hira Zaheer, Laura Garcia-Hernandez, Ajith Abraham, et al. 2020. Dif-
ferential Evolution: A review of more than two decades of research. Engineering
Applications of Artificial Intelligence 90 (2020), 103479.

[14] Gerhard Reinelt. 1991. TSPLIB—A traveling salesman problem library. ORSA
journal on computing 3, 4 (1991), 376–384.

[15] Rainer Storn and Kenneth Price. 1997. Differential evolution–a simple and
efficient heuristic for global optimization over continuous spaces. Journal of
global optimization 11, 4 (1997), 341–359.

[16] M Fatih Tasgetiren, Ponnuthurai N Suganthan, and Quan-Ke Pan. 2010. An
ensemble of discrete differential evolution algorithms for solving the generalized
traveling salesman problem. Appl. Math. Comput. 215, 9 (2010), 3356–3368.

[17] Nico LJ Ulder, Emile HL Aarts, Hans-Jürgen Bandelt, Peter JM Van Laarhoven,
and Erwin Pesch. 1990. Genetic local search algorithms for the traveling salesman
problem. In International Conference on Parallel Problem Solving from Nature.
Springer, 109–116.

[18] Yuan Yuan and Hua Xu. 2013. Flexible job shop scheduling using hybrid dif-
ferential evolution algorithms. Computers & Industrial Engineering 65, 2 (2013),
246–260.

	Abstract
	1 Introduction
	2 Background
	2.1 Traveling Salesperson Problem
	2.2 Random Key Encodings
	2.3 Differential evolution

	3 Proposed Improvements
	3.1 2-opt
	3.2 2-ne

	4 Experiments
	4.1 Parameters
	4.2 Solution Quality
	4.3 Effects of LS Search Budget

	5 Dicussion and Conclusions
	References

