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Abstract

Clustering is an unsupervised machine learning
technique that groups data points based on simi-
larity, with many distinct formulations and spe-
cialized solving techniques. This work focuses
on a MaxSAT encoding of the correlation clus-
tering problem and investigates the potential of
a specializing a hybrid CP/MaxSAT solver with
a novel propagator for this problem. This prop-
agator tracks the state of the underlying graph
by contracting and separating nodes based on
decisions made, and can compute lower bounds
by identifying substructures in the current prob-
lem state. The empirical study conducted on
both real world and synthetic problems sug-
gests that our implementation performs worse
than the baseline for execution time, using both
core-guided and linear search. The encoding
used with the propagator is much smaller than
the baseline, and as such could be beneficial
with linear search in memory-limited applica-
tions. The most promising avenues for improve-
ment are tighter bounding and a more efficient
implementation of the propagation techniques.

1 Introduction

Clustering is one of the most thoroughly stud-
ied and widely spread paradigms in the field of
data analysis [16, 15]. Although formulations
of clustering problems are numerous and nu-
anced, the core of the problem is splitting a set
of data points into different categories that re-
veal the underlying properties of the data. In
general, clustering belongs to the class of un-
supervised algorithms, and the partitioning of
the data points is performed with regard to a
similarity measure.
This work focuses on correlation clustering

(CC), a straightforward but versatile tool used
in data analysis applications. CC models the
data as a graph, where nodes represent data
points and edges between them are labeled
either positive or negative. This indicates
whether the two connected vertices are consid-
ered either similar or different [2]. The goal of
the optimization problem is to produce a parti-
tion of the graph that “respects” as many edge
annotations as possible. More specifically, the
clustering should minimize the sum of the num-
ber of negative edges between nodes in the same
cluster and the number of positive edges be-
tween nodes in separate clusters. Like many
problems belonging to the clustering paradigm,
CC belongs to the class of NP-Hard problems.

CC models lend themselves naturally to sev-
eral real-world problems, and thus our work is
applicable to a wide range of problems. Two
examples of CC problems are the work by Ni-
jssen et al. [12] and Zimek [17]. Nijssen et al.
[12] use CC as a model for mining data sets.
Slightly different formulations can model pat-
tern mining as a CC problem and thus a CP op-
timization problem [7]. Zimek [17] hypotheses
that gene expression analysis, metabolic screen-
ing, and customer recommendation systems can
be faithfully modeled through CC formulations.

Due to the problem’s computationally de-
manding nature, many approaches to correla-
tion clustering are based on heuristic and ap-
proximation algorithms. Such approaches in-
clude fixing the number of clusters [6] and re-
ducing the problem to the maximal multi-cut
problem, then leveraging specialized approxima-
tion techniques [5]. However, these approaches
do not provide guarantees of optimality, which
numerous real-world applications require. This
work focuses on exact solving through encoding
the problem in the MaxSAT setting and leverag-
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ing advanced boolean satisfiability techniques.
The aim is to improve the performance of exist-
ing exact solvers, which in general scale poorly
[9].
The choice of MaxSAT as a means of solv-

ing correlation clustering problems is motivated
by three key advantages. First, the declar-
ative nature of MaxSAT offers versatility in
terms of both solver choices and problem ex-
tensions. The former is an advantage for prac-
tical performance: since boolean satisfiability
is one of the most studied problems in theo-
retical computer science, increasingly advanced
solvers are being developed that improve effi-
ciency without any overhead on the user’s end.
Approaching the problem in a declarative man-
ner means additional extensions of constrained
clustering can also be specified, such as the
commonly occurring must- and cannot-link con-
straints [14]. Last, SAT-based approaches al-
low for instances to be solved to optimality.
This may be an extremely valuable property for
difficult-to-obtain data sets or problems relat-
ing to sensitive real-life problems. MaxSAT can
be approached through linear search, which gen-
erates incrementally better solutions until opti-
mality is reached and proven. While potentially
slower than other approaches, these techniques
enable our formulation to retain the advantage
of approximation algorithms, the generation of
approximate solutions, while providing optimal-
ity guarantees if afforded enough time.
We chose to extend this MaxSAT approach to

a hybrid MaxSAT/CP solving technique, since
this allows us to incorporate problem-specific
knowledge to increase solving speed. This way,
there is potential for larger speed-ups than
when the solver is restricted to Black Box op-
timization improvements. In particular, our ap-
proach is centered around implementing a novel
graph propagator that uses Zykov’s subtraction-
addition recurrence and keeps track of the inter-
mediate graph state [18]. This allows dynamic
bounding techniques to prune the search space.
Our empirical analysis suggest that our im-

plementation of the propagator is not efficient
enough to outperform the baseline encoding in
large real-world problems. However, the results
also indicate that the bounds may provide an
improvement in the time taken to prove the op-
timality of solutions in linear search settings, for
synthetically generated problems. The conver-
gence time when considering the number of de-
cisions alone is comparable between our work

and the baseline.

The remainder of this paper is organized as
follows: section 2 discusses related work, and
section 3 introduces the necessary background
notions. Our contributions and their motiva-
tions are described in section 4, section 5 details
the empirical analysis carried out to evaluate
our results. The results of the empirical study
are highlighted in section 6. A summary and
conclusion are given in section 7. Lastly, possi-
ble future extensions are detailed in section 8.

2 Related work

In this section, we provide an overview of the
work that has been done on correlation cluster-
ing and motivate the novelty of our approach.

Exact solving for correlation clustering.
Bansal et al. [2] laid the foundations for CC by
formalizing the problem, showing that it is NP-
complete, and developing an efficient approxi-
mation algorithm. Multiple exact Integer Lin-
ear Programming (ILP) and Quadratic Integer
Programming (QIP) models of the CC problem
were formulated for specific use cases [13, 1, 4].

Berg and Järvisalo [3] proposed a novel
MaxSAT-based formulation along with three en-
coding strategies. They empirically show that
all three encoding types outperform both the
ILP and QIP models in terms of runtime and
memory usage scalability. Their novel approach
scales better but still times out between 14
and 54 percent of the tested instances, depend-
ing on the solver. They hypothesize that a
more sophisticated pruning method could signif-
icantly improve the results. Miyauchi et al. [10]
achieved better scalability with their ILP model
by perturbing the zero-weight edges in the graph
and reducing the number of constraints of the
model. They show that their formulation signif-
icantly outperforms the MaxSAT formulation of
Berg and Järvisalo in several benchmarks. How-
ever, they still failed to obtain exact results on
several benchmark problems.

Hybrid MaxSAT/CP solving. Marchal’s
[9] work introduced a new MaxSAT algorithm
for CC, and a novel encoding based on the work
of Hebrard and Karsirelos [8] using lazy clause
representation. This encoding has a smaller
size than the encoding proposed by Berg and
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Järvisalo [3] and is competitive in terms of run-
time performance. He also proposed a problem-
specific propagator for a hybrid SAT/CP ap-
proach. His bounding was ineffective when us-
ing core-guided search. However, he suggests ex-
tending the propagator might significantly im-
prove the algorithm’s performance [9].
To potentially find a more scalable solution in

both encoding size and runtime, we take inspi-
ration from the work of Hebrard and Karsirelos
[8]. They propose a specialized SAT/CP solv-
ing method for the problem of graph coloring,
which shares many symmetry structure chal-
lenges with CC. They introduce key problem-
specific novelties, including a transitivity aware
propagator and two heuristic bound estima-
tors, inspired by Mycielskian graphs [11]. They
achieved significantly better solving efficiency
than the current state-of-the-art solutions [8].
We have adapted the principle of a transitivity
aware propagator that continuously updates the
problem state to CC, with the aim of improving
runtime performance.

3 Background

This section provides an overview of basic con-
cepts and notation required for understanding
our approach.

3.1 Correlation clustering

First introduced by Bansal et al. [2], correlation
clustering is a similarity-based clustering prob-
lem that seeks to cluster together nodes that
are similar. Formally, the problem consists of
a set of vertices V = {vi} ∀i ∈ {1, ..,N} and
two sets of edges E+, E− ⊆ (V × V ) with the
property E+ ∩ E− = ∅. Two nodes vi and
vj are said to be similar if (vi, vj) ∈ E+ and
dissimilar if (vi, vj) ∈ E−. We also assume
that edge similarity is symmetrical, i.e., that
(vi, vj) ∈ Es ⇐⇒ (vj , vi) ∈ Es, s ∈ {+,−}.
The problem can be abstracted into a graph
G = (V,E+, E−), which represents the relations
between all data points in the problem. The
more general formulation of the problem can be
extended from the basic version by introducing
a weight functionW : E+∪E− → R that assigns
weights to all edges in the graph, which can be
interpreted as a more granular measure of simi-
larity. For simplicity purposes, the remainder of
this paper addresses the non-weighted variation

of CC (W (vi, vj) ∈ {−1, 1} ∀vi, vj ∈ E+ ∪E−),
although all concepts can be trivially extended
to the weighted version. A clustering is a func-
tion cl : V → N that assigns each point in the
graph to a cluster represented by a natural num-
ber. Two points vi and vj are said to be co-
clustered if cl(vi) = cl(vk).

Intuitively, the optimization goal is to min-
imize the cost of the clustering, which corre-
sponds to a sum of positive and negative mis-
takes. A positive mistake is an assignment of
two dissimilar nodes to the same cluster, and a
negative mistake is an assignment of two similar
nodes to different clusters. More formally, the
optimization function is given in the equation
below.∑

(vi,vj)∈E+

cl(vi )̸=cl(vj)

W (vi, vj) +
∑

(vi,vj)∈E−

cl(vi)=cl(vj)

W (vi, vj)

3.2 SAT and MaxSAT

The satisfiability problem, also called SAT, is
one of the core problems in computer science.
Its purpose is to assign variables boolean val-
ues according to constraints. More formally, let
v1, v2, ..., vn be a list of variables, and let there
be m constraints of the form

∨k
i=0 vi. The SAT

problem is to determine whether there exists an
assignment of values to variables such that all
the constraints are satisfied. Constraints in SAT
are called clauses, and the conjunction of clauses
is called a proposition.

MaxSAT is an extension of SAT problem
where the goal is to maximize the number of sat-
isfied clauses. There are different variations of
MaxSAT. Weighted MaxSAT gives every clause
a weight, and the objective is to minimize the
sum of weights of falsified clauses. The vari-
ation of weighted MaxSAT is weighted partial
MaxSAT, which introduces the notion of hard
and soft clauses. In such a variation, the objec-
tive is to satisfy all the hard clauses and mini-
mize the number of unsatisfied clauses.

More formally, let (C,w) be a pair of
a clause C and the cost w imposed for
falsifying the clause. If the clause C
is hard, w is equal to infinity. Let φ =
{(C1, w1), (C2, w2), ..., (Cm, wm), (Cm+1,∞), ...,
(Cn,∞)} be a multiset of weighted clauses
and I be the truth assignment. Then weighted
partial MaxSAT problem is the problem of
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minimizing the cost of assignment I on φ.
If the cost is infinity, then one of the hard
clauses is not satisfied, so the multiset becomes
unsatisfiable.
Two main approaches exist for solving

MaxSAT. Core-guided search is a lower bound
approach which uses the information of unsatis-
fiable sets of clauses (cores) impose a bound on
the problem. Linear search is an upper bound
approach that uses a SAT-solver iteratively to
find assignments that satisfy increasingly many
soft clauses.

3.3 Transitive encoding

The transitive encoding, as introduced by Berg
and Järvisalo [3], is a direct mapping from
a correlation clustering problem instance to a
MaxSAT problem. It consists of a variable
for each possible edge between vertexes, soft
clauses with a weight of either 1 or -1 for each
edge, and hard clauses which enforce transitiv-
ity. More formally, for a correlation cluster-
ing instance G = (V,E+, E−), the transitive
encoding generates (boolean) variables xij =
xji ∀1 ≤ i ≤ j ≤ |V |, the set of hard clauses
Fh = {(¬xij ∨ ¬xjk ∨ xik)} ∀ distinct i, j, k ,
and the set of soft clauses Fs = {xij ∀ (i, j) ∈
E+} ∪ {¬xij ∀(i, j) ∈ E−}
The hard clauses are necessary to enforce

transitivity. If two edges in a triangle of vertexes
are set to true, all three must be in the same
cluster, and thus we can deduce that the third
edge must also be true. In a logical setting, these
clauses enforce that (xij ∧ xjk) → xik. Without
these constraints, the cluster assignments might
not be consistent.
This encoding was chosen as the underlying

representation for our solver over other possi-
bly more efficient encoding types because it is
very straightforward to decode what each vari-
able means and has the closest resemblance to
our proposed parallel graph structure.

3.4 Using substructures as lower
bounds

One of the potentially effective ways to boost
solving efficiency is to prune the MaxSAT search
space. This can be done by using lower bounds
on the total cost of the problem based on the
internal representation of the graph at each step.
We conceptually divide the costs present in

CC graphs into two types: direct and future

costs. Direct costs correspond to the number of
(soft) constraints already violated. This type of
cost is incremented whenever a decision or prop-
agation is made. Future costs are a lower bound
on the cost that must still be incurred. Our esti-
mation method is centered around counting the
number of specific substructures present in the
graph in arbitrary states. To do this, we use 2
triangle-based structures.

Figure 1 introduces the triangle types used
to count lower bounds. There are five possible
assignments to clusters for each triangle. The
crucial idea is that for any clustering of the
nodes a, b and c, incurring a cost of at least
1 is inevitable. For example, Figure 1a shows
a simple triangle with two positive edges and
one negative edge. If nodes a and c are com-
bined into one cluster and b is in a separate
cluster, the cost would be 1 because nodes a
and b are in different clusters. The same pat-
tern applies to all the possible clusterings of the
graph. Therefore, without any solver decisions,
it can be inferred that the cost of the graph with
such a triangle is at least 1. The same logic
can be applied to a different triangle structure:
Λ-triangle in Figure 1b. For more insight into
these types of triangles, we refer the reader to
the Master thesis of Marchal [9]. These triangles
must be completely disjoint because otherwise
the greedy computation might overestimate the
cost, as exemplified in Figure 2.

a

b c

(a) Triangle with a cost
of at least one. Positive
edges are green, nega-
tive edges are red.

a

b c

(b) Λ-triangle. Dashed
lines indicate that the
node are separated.

Figure 1: Bounding triangle substructures.

3.5 Recurrence structure

To improve the efficiency of the algorithm, we
prune the search space throughout the run.
During execution, the solver keeps track of
changes in the underlying graph. At any point,
the solver can choose to either contract two
nodes into the same cluster, or separate them.
In this context, separation means that the two
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a

b

x y−3

+2

+2

+2

+2

Figure 2: Two bounding triangles sharing an
edge. If a, b, c and d are merged together only
the cost of ac is incurred, resulting in cost 3.
The greedy counting of two independent trian-
gles would expect a cost of at least 4.

nodes cannot be part of the same cluster in
any subsequent state on that search branch.
These operations follow the recurrence relation
of Zykov [18]. Figure 3 shows a small example of
how two nodes of a graph are contracted when
they are decided to be in the same cluster. Two
nodes b and c are merged into one node bc, to-
gether with their edges, which have as weights
the sum of weights of edges from both nodes to
another node.

a

b c

+1 +1

+1

(a) Triangle structure
before contraction.

a

bc

+2

(b) Triangle structure
after contraction.

Figure 3: Contraction of nodes a and b, since
they both had a positive edge to c the weight of
ab to c is now +2.

4 Graph Propagator

The propagator is separated into two parts,
propagating transitivity and propagating
bounds. Both types of propagation are based
on an internal graph structure synchronized
with the solver. Whenever the solver assigns
a variable to true, two nodes are merged, and
whenever the solver assigns a variable to false,
two nodes are marked as separated. Each node
in this graph structure initially represents only
one vertex. However, using the Zykov recur-
rence, any node might represent an arbitrary
number of vertices later in the solving process.

4.1 Propagating transitivity

When we mark two nodes as separated or merge
them in the graph structure, we can also eas-
ily reason what other assignments must follow.
Nodes in the graph structure have a list of ver-
tices they represent, and thus which variables
are co-clustered. If two nodes are merged, we
need to set all the variables corresponding to the
edges between two merged nodes to true, prop-
agating that all vertices are in the same cluster
to the solver. If we separate two nodes, a sym-
metric procedure is followed. More precisely, we
need to propagate that all variables with one
vertex in the first cluster and the second vertex
in the second cluster are separated. Both types
of transitive propagation can fail if the solver
has already assigned one of the variables to the
opposite value. In this case, a conflict is raised,
where the conflicting edges are given as an ex-
planation.

By enforcing the transitivity constraints us-
ing the propagator, we make the transitivity
constraints in the MaxSAT problem encoding
redundant. Therefore, a lazy encoding is used
with only the soft constraints for each edge, re-
ducing our worst case on the number of con-
straints in the problem definition to O(E) where
E is the number of edges. This encoding can be
considered lazy since the transitivity constraints
are generated from the learned clauses by the
solver only when necessary, as opposed to cre-
ating all constraints in advance.

4.2 Propagating Bounds

To more efficiently prune the search space, we
compute a lower bound by counting triangle
substructures in the graph. These bounds are
then used to stop the search for the solution in
the current variable assignments if the current
state can not improve on the best solution found
so far. Thus, when the lower bound of the cur-
rent state of decisions is higher than the global
upper bound from the best-found solution so far,
a conflict can be derived.

This lower bound is calculated based on the
triangles as discussed in subsection 3.4. There
are three challenges in this propagation. Firstly,
finding the best bound is itself a hard prob-
lem. Secondly, the graph keeps changing dur-
ing the solving process, meaning that previously
counted triangles might no longer exist, or a bet-
ter bound might have become available. The
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last difficulty is providing an explanation to the
solver for the conflict raised.
The first problem is tackled by using an ap-

proximate greedy approach. This algorithm
finds bound in O(N3) where N is the number
of nodes. It works by first finding all cliques of
size 3 in the internal graph. If this clique follows
the structure of one of the bounding triangles,
we add the minimum incurred cost to the lower
bound and mark the edges to avoid overestima-
tion. The approximate bound is the sum of all
costs implied by the counted triangles.
The second problem is solved by exploiting

the fact that the point when the bounds need to
be updated is right after a change in the graph
structure, which also happens after propagating
transitivity. Thus, checking the bounds immedi-
ately after transitivity is propagated ensures the
bounds are checked as often as possible without
recalculating the bounds on the same graph.
Providing a good explanation of why the de-

cisions can not result in an optimal solution can
help the solver learn from the conflict. In our
propagator, this explanation consists of all de-
cisions made before this point. This part of the
search space does not need to be explored any-
more. However, it does not provide more pre-
cise information as to which subset of decisions
caused this higher bound to the solver.

5 Empirical Study

This section provides the details of the empirical
study carried out to assess the performance of
our implementation.

5.1 Experimental goal

The empirical study aims to determine the influ-
ence of the novel propagation techniques on the
performance of the MaxSAT solver. To this end,
several key aspects of the behavior of the differ-
ent versions of the solver are compared. The
main research question we aim to answer is:

[RQ] Does a propagator with dy-
namic bounding using the addition-
contraction recurrence of Zykov im-
prove the performance of exact solv-
ing using hybrid SAT/CP of correla-
tion clustering?

To limit the scope of this study, we split the
main question into three sub-questions:

1. How does the novel propagator differ when
using a core-guided optimization approach
instead of linear search?

2. How does the novel propagator influence the
solution quality of the underlying MaxSAT
solver?

3. How does the novel propagator influence the
number of decisions made by the underlying
MaxSAT solver?

5.2 Benchmark Instances

We used two synthetically generated graph in-
stances, which we refer to as synth N, respective
to their sizes. To generate these graphs, a clique
of size N is generated. From that clique, edges
are split between positive and negative edges ac-
cording to some specified Bernoulli distribution
parameter psplit. After the split, each edge is
deleted from the graph according to a different
Bernoulli parameter pdelete such that the (ap-
proximate) desired graph density is obtained.
For these experiments psplit and pdelete are fixed
to 0.5 and 0.8, respectively.

In addition, we used five real-life datasets,
which we transformed to graph instances. These
were all obtained from a database provided
by NTU Singapore 1. Since some instances
were too large for the limited memory available
within this research, we reduced the size by only
selecting a subset of data points. Table 1 lists
some relevant properties for each of the bench-
mark sets.

Name Nodes Classes
glass 214 6
iris 150 3
vehicle 400 4
vowel 250 11
wine 178 3

Table 1: The used real-life datasets. The num-
ber of classes gives insight in the expected result
of the clustering.

5.3 Experimental Protocol

This subsection describes the evaluation strate-
gies and quantifiers used to assess the perfor-
mance of the propagator implementation.

1https://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets/
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5.3.1 Metrics

Objective value. The objective value of the
final and intermediate solutions produced by the
solver is an essential descriptor of its quality,
when constrained by time. This metric can only
be used when at least one of the solvers in the
comparison did not find and prove optimality.

Number of decisions. The goal of the
bounding techniques is to prune the search space
such that decisions that do not lead to opti-
mality are avoided. Evaluating solution quality
as a function of the number of decisions made
by solver helps decouple the algorithmic perfor-
mance of the solver from its implementation.

Number of conflicts from bounding. We
use the number of conflicts our propagator raises
as an indicator of the frequency with which the
solver exploits the information from our tech-
nique. This reveals how effective the bounds are
and helps to determine how efficient the propa-
gator needs to be as to not bottleneck the solver.

5.3.2 Evaluation strategy

The metrics are obtained by sampling solver
runs on the graph instances. To generate re-
sults with a higher statistical significance, each
instance is independently solved 5 times using
different seeds and the results are aggregated.
The timeout was set to 60 minutes for the real-
world problems and to 5 minutes for the syn-
thetic instances.
The compared solver configurations are: (1)

the transitive encoding of Berg Järvisalo [3] with
the standard version of the solver, (2) the lazy
transitive encoding with the version of the solver
that integrates our custom propagator and no
bounding techniques, and (3) the lazy transitive
encoding with the solver including the custom
propagator and the triangle bounds. We refer
to these versions as trans, prop, and prop +

bounds, respectively. All experiments were ex-
ecuted once with a full linear search based ap-
proach and once for a full core-guided search
approach.
All instances of the solver have been imple-

mented in C++ and compiled using g++ (GCC)

12.1.0. The solver used is Pumpkin, an un-
released SAT/MaxSAT solver created by Emir
Demirović. All experiments have been carried
out on a Manjaro 21.2.6 machine running on an

Instance trans prop prop bounds
glass t/o t/o t/o
iris t/o t/o t/o
wine 2.07 t/o t/o

vehicle 8.32 t/o t/o
vowel 22.57 t/o t/o

synth 20 0.90 5.56 2.03
synth 25 t/o t/o 163.62

Table 2: Time in CPU seconds required by lin-
ear search to prove optimality. t/o indicates the
configuration timed out.

Instance trans prop prop bounds
glass 16.42 t/o t/o
iris 1.64 t/o t/o
wine 2.05 t/o t/o

vehicle 7.71 t/o t/o
vowel 4.63 t/o t/o

synth 20 0.01 0.40 n/a
synth 25 0.11 2.76 n/a

Table 3: Time in CPU seconds required by core-
guided search to prove optimality. t/o indicates
the configuration timed out and n/a means the
configuration crashed.

AMD Ryzen 7 5800H CPU at 3.20GHz, with
16GB of RAM.

6 Results

This section contains the analysis of the results
of the empirical study.

6.1 Core guided search

To capture the difference between the two solv-
ing paradigms, we performed all experiments us-
ing core guided and linear search, respectively.
The results averaged over 5 independent runs
are given in Table 2 and Table 3.

The results indicate that the trans encoding
performs significantly better when using core-
guided search. When compared to linear search,
the core-guided configuration is able to prove
optimality in three more instances and the opti-
mal results are always found more quickly. This
is especially noticeable on the vowel instance,
where core-guided is on average 80% faster.
prop displays a similar pattern to trans

for the synthetic instances. Using core-guided
search, it takes an order of magnitude less time
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for it to prove optimality for synth 20 than in
the linear search setting. In addition, this con-
figuration is only able to solve synth 25 when
using core-guided search. Due to implemen-
tation errors, core-guided search could not be
tested with the prop + bounds version on the
synthetic problems. Because both propagator
configurations time out on real world problems,
no decisive comparison can be made between the
two.
The comparisons indicate that core-guided

search is superior to linear search when the goal
is to find the optimal solution to a CC prob-
lem. However our bounding technique does not
provide any improvement, no conflicts are being
raised from it. However, if the goal is to find
as good a solution as possible within a fixed
time budget that does not allow optimality to
be proven, linear search is the superior option
because it can generate valid intermediate solu-
tions. In this case, our bounding technique does
raise conflicts, as can be seen in Table 4.

Figure 4: The mean of the best solutions found
for the real-life datasets. The lighter area shows
the optimal solution. t/o indicates that the
solver timed out before any solution was found.
The black lines show the range from best to
worst solution found.

6.2 Final solution quality

To capture the influence of the novel propagator,
we consider the solution quality obtained within
the time budget when using linear search. The
results for this can be found in Table 2. For the
synthetic datasets, the optimal solution is found
using linear search with all techniques, but opti-
mality is only proven consistently for synth 20.

Instance Mean no. of conflicts
glass 4407
iris 46023
vowel 725
vehicle 0
wine 0

synth 20 10397
synth 25 144615

Table 4: Mean number of conflicts based on
the lower bound found by our bounding tech-
nique, rounded to the closest integer for linear
search. For core-guided search, there were never
any conflicts found.

This instance is solved significantly faster by the
transitive encoding, with trans being on av-
erage twice as fast as prop + bounds and six
times faster than prop. These results indicate
that linear search may benefit from the bounds
provided by the novel propagator on small prob-
lems, but the implementation is too slow for it
to keep up with the performance of trans on
real world instances. For synthetic 25, trans
and prop + bounds find the optimal solution
in all runs, while prop only finds it in 2 of 5
runs. However, optimality is only proven when
using the propagator with bounds. This sug-
gests that the bounding technique might provide
a speed-up for proving optimality, even though
it does not find the solution faster. This insight
is reinforced by the number of bound conflicts
that were raised, presented in Table 4. For the
synth 25 instance, the bounds prune the search
space significantly more often in comparison to
the others.

The results of the final solution cost for the
real world datasets can be found in Figure 4.
The transitive baseline always finds a better so-
lution quality when given a time-based budget.
For the vehicle and wine instances, it is the
only configuration to find any solution. There
is no significant difference between the quality
of the solution found with or without bounding.

6.3 Convergence of solution

To be able to analyze how the propagator and
bounds affect the number of decisions required
to get to a solution of a certain quality, we mea-
sured the convergence of the intermediate so-
lutions over the number of decisions. The re-
sults for this can be seen in Figure 5. For the
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(a) Glass (b) Iris

(c) Synthetic dataset of size 20. (d) Synthetic dataset of size 25.

Figure 5: The convergence of solution quality over number of decisions for each of the tested
configurations. The line shows the mean value of the 5 executions, with a region colored with the
height of a standard deviation in both directions, until the minimal number of decisions reached
over all executions.

larger datasets, the propagator was too slow to
find any useful solutions within the time bud-
get. For the glass dataset, the propagator with
bounds finds lower cost solutions with fewer de-
cisions. For the iris dataset, the propagator
without bounds seems to perform better in the
first 10,000 decisions, but the difference between
solvers shrinks over time. For synth 20, a sim-
ilar pattern emerges for trans. For synth 25,
trans performs best within the number of de-
cisions, and the other two solvers perform sim-
ilarly. Overall, there is no clear preference for
any of the 3 techniques when using a time-out
based on the number of decisions, based on the
tested datasets.

7 Conclusion

We have introduced a novel transitivity-based
propagator for solving the correlation cluster-

ing problem exactly in a hybrid MaxSAT/CP
framework, which uses dynamic triangle bounds
to prune the search space for the underlying
solver. We implemented our propagator using
an intermediate representation of the underlying
graph within Pumpkin, a SAT/MaxSAT solver
created by Emir Demirović.

To assess the performance of our propaga-
tor, we conducted an empirical study on a
dataset consisting of five real-world datasets and
two small stochastically generated problem in-
stances. We compared two versions of our im-
plementation against a different encoding with-
out a custom propagator. The results indicate
that the combination of core-guided search and
the baseline transitive encoding performs best.
The propagator does not provide any added
benefit, but merely adds unnecessary computa-
tional overhead when using core-guided search.

When using linear search, the propagator suf-
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fers from a large overhead, which negatively
impacts solution quality for most instances in
comparison to the baseline. The only clear ad-
vantage of the propagator configurations is the
much smaller size of its encoding. Further, our
research indicates that the bounding does not
significantly improve performance. For two of
the instances, the newly introduced bounds are
tight enough to prune the search space and im-
prove efficiency. This might indicate that an im-
proved version of the propagator could be ben-
eficial in cases where memory is essential.

8 Future work

This section outlines some of the directions that
future improvements and extensions of our work
could focus on.

Core-guided search The empirical results
suggest a strong reduction when using a core-
guided search strategy, and our propagator cur-
rently does not provide any benefit in this case.
We were unable to find the underlying reason
why the lower bound occurs in the time frame of
this work. Research to deepen the understand-
ing of the combination of core-guided search
and the substructures might allow adapting the
bounding in a way that improves core-guided
search. This would be essential for this method
to potentially improve upon the current state-
of-the-art.

Tighter Bounds Our work extensively uses
the triangle bounding technique, which only
considers 3-cliques and the minimum cluster-
ing cost they necessitate. However, there are
cases where more sophisticated bounds can be
employed. We present one such example in
Figure 2. Using the simple triangle bounding
techniques, either of the <x, a, b> and <y, a,

b> triangles would be found, and a bound of
2 would be computed for either of its positive
edges. The remaining triangle would be dis-
carded from the bound computation in this sce-
nario. A tighter bound can be obtained when
considering that the edge (a, b) is shared be-
tween the triangles: if a and b are clustered to-
gether, this can be seen as both triangles incur-
ring half the cost of the (a, b) edge. Using this
approach, a tighter bound of 3 would be com-
puted, which might improve the solver’s per-
formance. However, there are also advantages

to this approach. Since edges can be shared
between an arbitrary number of triangles, the
computation might be too expensive to be prac-
tically viable within a solver. Moreover, it is
possible that such structures are not common
enough in real-world applications to make a sig-
nificant difference.

Propagating other encodings The transi-
tive encoding was chosen for this project for the
relative ease of its implementation compared to
the alternatives. However, Berg Järvisalo [3]
found through their empirical that the more
sophisticated binary encoding performs better
on real world problems. While implementing
a propagator for this encoding would be far
more complex due to the number of constraints
involved and possible optimizations that they
might be subjected to, this might prove more
efficient than the transitive implementation.

Disconnected graphs Our graph represen-
tation is currently only used for finding better
lower bounds. However, there is more potential
in having this representation available, for ex-
ample, by looking at disconnected graphs. Two
independent problems can be solved in paral-
lel when the graph is disconnected. This might
result in more efficient solving.

Better bound explanations The clauses
learned from our bounding techniques can be
very long and contain many decisions that do
not influence the incurred or future cost we com-
puted. Generating explanations based on the
incurred cost and the assignments of the found
triangle structures would be more complicated
and possibly more expensive. However, we be-
lieve it could also lead to better conflict-driven
learning and reduce the number of decisions.

Implementation efficiency For this work,
the focus was on looking into the potential of
this method. The efficiency of implementation
was not a priority, which influences the runtime
results. For a more complete insight in this po-
tential way to reduce the search space, this could
be optimized in future work, to see the minimal
overhead required for identifying the substruc-
tures. It would also be interesting to consider
not recomputing the bounds after every deci-
sion, but incrementally keep track of changes to
the bound.
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[8] Emmanuel Hébrard and George Katsirelos.
Constraint and satisfiability reasoning for
graph coloring. Journal of Artificial Intel-
ligence Research, 69:33–65, 2020.

[9] Maxim Marchal. Exact machine learn-
ing: Improving space and speed of maxsat
solvers for correlation clustering. Master’s
thesis, TU Delft, 2021.

[10] Atsushi Miyauchi, Tomohiro Sonobe, and
Noriyoshi Sukegawa. Exact clustering via
integer programming and maximum satisfi-
ability. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[11] Jan Mycielski. Sur le coloriage des graphes.
In Colloq. Math, volume 3, page 9, 1955.

[12] Siegfried Nijssen, Tias Guns, and Luc
De Raedt. Correlated itemset mining in roc
space: a constraint programming approach.
In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge dis-
covery and data mining, pages 647–656,
2009.

[13] Jurgen Van Gael and Xiaojin Zhu. Corre-
lation clustering for crosslingual link detec-
tion. In IJCAI, pages 1744–1749, 2007.

[14] Kiri Wagstaff and Claire Cardie. Clus-
tering with instance-level constraints.
AAAI/IAAI, 1097:577–584, 2000.

[15] Dongkuan Xu and Yingjie Tian. A
comprehensive survey of clustering algo-
rithms. Annals of Data Science, 2(2):165–
193, 2015.

[16] Rui Xu and Donald Wunsch. Survey of
clustering algorithms. IEEE Transactions
on neural networks, 16(3):645–678, 2005.

[17] Arthur Zimek. Correlation clustering.
ACM SIGKDD Explorations Newsletter,
11(1):53–54, 2009.

[18] Alexander Aleksandrovich Zykov. On some
properties of linear complexes. Matem-
aticheskii sbornik, 66(2):163–188, 1949.

11


	Introduction
	Related work
	Background
	Correlation clustering
	SAT and MaxSAT
	Transitive encoding
	Using substructures as lower bounds
	Recurrence structure

	Graph Propagator
	Propagating transitivity
	Propagating Bounds

	Empirical Study
	Experimental goal
	Benchmark Instances
	Experimental Protocol
	Metrics
	Evaluation strategy


	Results
	Core guided search
	Final solution quality
	Convergence of solution

	Conclusion
	Future work

