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ABSTRACT
The introduction of gradual type annotations in legacy software
systems increases their understandability and maintainability, and
allows developers to easily discover previously undetected bugs.
Machine learning techniques for type inference have proven to be
promising solutions, automatically providing high-accuracy solu-
tions without requiring much computational time. However, the
results they achieve for user-defined and rare types drop signifi-
cantly due to the data sparsity and the bounded type vocabulary that
many models utilize. TypeSpaceBERT uses deep similarity learning
to fine-tune CodeBERT for type inference allowing themodel to have
an unbounded type vocabulary and synthesize potential unseen
types as a result of the pre-trained CodeBERT’s general language
understanding. This paper reports on the construction of the model
and the rationale used for its design and fine-tuning. It provides an
empirical evaluation that seeks to assess TypeSpaceBERT’s perfor-
mance in comparison to a classification-centric baseline, in terms
of efficiency and scalability. The results show an promising trend in
the performance of the model; in particular. After processing 2% of
the dataset of 9 million type instances, the accuracy increases from
0.026 accuracy to 0.032. We find that our approach significantly
outperforms the baseline both in terms of prediction performance
and scalability. Finally, we discuss the limitations of our emprirical
analysis and make recommendations for future research to better
generalize the results of TypeSpaceBERT.

1 INTRODUCTION
The type system is one of the defining components of every pro-
gramming language. Type systems not only determine crucial at-
tributes of programming languages, but also play a key role in steer-
ing the ways practitioners utilize and understand them. Dynami-
cally typed programming languages such as Python and JavaScript
type check the variables during run time. Their advantages are
that they are generally easier to use and allow for a quicker devel-
opment process. However, this comes at a cost, namely, weaker
maintainability and an inability to catch errors at compile time.

To fully reap the benefits of a type system, some dynamically
typed languages have been implementing ways for developers to
use static typing in their code. For example, the Python community
introduced optional type hinting in PEP 484 [10]. The JavaScript
community coped with the issue by proposing an alternative -

TypeScript, a gradually typed language. Gradually typed languages
perform type checking at compile time only for the optionally pro-
vided typed variables. This way of type checking partly verifies
the type safety of the program and thus guarantees certain prop-
erties. Without compromising flexibility, such strategies reduce
type-related bugs by restricting and informing developers about
type errors and other related defects.

However, this poses a problem when it comes to a large vol-
ume of code that had been written before the typing options were
introduced to the language in question. The code is untyped and
therefore can not benefit from the new changes. To address this
issue, we distinguish three methods for solving this problem.

The simplest solution is to add the types manually. Clearly, this
is a very cumbersome and time-consuming process. Compounding
that, understanding code written by another individual is hard,
making the whole procedure especially error-prone.

The second option is the utilization of static type inference meth-
ods. Despite improving both the time needed and the accuracy
achieved compared to manual labor, static analysis methods are
still imprecise. The main reasons for this are the dynamic language
features which result in overestimations and produce results that
achieve type matching, which is not exact [25]. For this reason, the
end results are seldom satisfactory.

Finally, the third option, machine learning, has proven to be
adequate in predicting the types of code fragments and thus accel-
erating the automation of development tasks. Still, ML solutions
are not perfect and have suffer from several weaknesses. One of
the main hurdles was that the vocabulary size for older attempts
was limited [12, 20, 23, 32]. Over time there were various attempts
to mitigate this using different architectural basis such as RNNs
[21, 27], GNNs [2, 32] and LSTMs [20, 23]. These attempts culmi-
nated in the current state-of-the-art (SOTA), namely, the use of
Transformers [31] as an architectural basis in conjunction with sim-
ilarity learning. Transformers constitute the most widely adopted
recent advancement in the field. This is because they are currently
the backbone of established SOTA solutions for natural language
processing (NLP) problems. The deeply ingrained semantic regular-
ities and similarities between NL and PL [13] make them natural
candidates for code-related tasks. One of the main advantages of
the Transformer architecture is that it allows for greater context to
be effectively exploited in the prediction [8, 11, 16].



More recent approaches address this hurdle by using type cluster-
ing methods to allow for an unbounded number of types [2, 14, 21].
Another benefit of using type clustering is that it can also allow
for unseen type prediction. In the case of our model, although not
tested due to lack of time, as it would require to re-train CodeBERT
and the tokenizer, it should also be able to predict such unseen
types [14].

Motivated by the shortcomings previous approaches had, we
present TypeSpaceBERT, a fine-tuned CodeBERT extension with an
unbounded type space that applies Deep Similarity Learning (DSL)
to discriminate between the different types. We utilize the out-
put embedding of the fine-tuned CodeBERT model to generate a
𝑑-dimensional type space. To infer a type, the input example is
projected to the type space, and then k-nearest neighbors heuristic
is used to calculate the output distribution. The fact that CodeBERT
was originally pre-trained on a large corpus of multilingual code
data provides the desired flexibility in our model. The framework
we propose can be generalized and applied to any encoder model.
Implementing our approach would result in a decoder model with
an unbounded vocabulary size that could synthesize previously
unseen types. To summarize, the main contributions of the paper
are:

• TypeSpaceBERT, A DSL-based CodeBERTmodel, fine-tuned
on ManyTypes4TypeScript that uses type clusters allow-
ing it to have an unbounded vocabulary and providing it
with the ability to synthesize previously unseen types.

• A classification version of CodeBERT that is fine-tuned for
type prediction and then used as a comparable baseline to
evaluate.

• A rigorous comparative evaluation of the model in terms of
type prediction performance and scalability, that includes
all standardized metrics for the type prediction task.

The remaining of the paper is structured as follows: first, Sec-
tion 2 gives an overview of the historically significant and current
SOTA methods for type inference. Following that, Section 3 in-
troduces our TypeSpaceBERT and details the underlying design
choices. Section 4 explains our decisions when setting up the eval-
uation. The empirical results and the threats to their validity are
analyzed in Section 5 and Section 6, respectively. A discussion
and potential future work are then presented in Section 7. Finally,
Section 8 concludes the paper.

2 RELATEDWORK
In recent years, code generation and translation problems have
been receiving an increasing amount of attention from researchers
and practitioners alike. Machine learning solutions have played
an essential role in developing accurate techniques for tasks like
type prediction. Many techniques have been proposed which seek
to leverage both natural language (NL) and source code of differ-
ent programming languages (PL) to best extract semantic infor-
mation from large open-source code corpora. Specifically for the
type prediction task, most efforts focus on Python, JavaScript, and
TypeScript programming languages. This section aims to provide
an extensive overview of the current literature on SOTA models
for the type prediction task. We compile the surveyed prior type

prediction work in Table 2.1, highlighting their most distinctive
characteristics.

2.1 Fixed Type Vocabulary Approaches
The first work to show that vast open-source corpus can be ex-
ploited for synthesizing semantically powerful type inference algo-
rithms is JSNice [28]. This approach established that meaningful
representations can be effectively extracted from input programs
using Conditional Random Fields (CRFs), an undirected graphical
model which can predict properties of the source code. This work
establishes several cornerstone concepts that would be utilized in
most following work, including the need for capturing program
structure, the value of processing NL elements of code (such as
identifiers), and the possibility of casting type inference as either a
Maximum a Posteriori (MAP) estimation or a clustering (similarity-
based) problem. Future work would improve on the shortcomings
of JSNice’s dependency network.

Xu et al. [33] introduced the first probabilistic type prediction ap-
proach for Python. Previous work in the Python community had fo-
cused on static analysis and deterministic computation [9, 29]. The
novelty of this approach comes from combining such techniques
with a classifier that serves as the engine of a probabilistic inference
engine. The framework leverages NL in source code by first fitting
a classifier based on identifier names and their associated (statically
inferred) types. The classifier is then used to construct a probabilis-
tic constraint generator that establishes "requirements" that type
predictions must match, with regard to data flow, sub-typing, and
naming. Finally, a graphical probabilistic inference engine exploits
these constraints by allowing for iterative belief propagation of type
predictions of the form 𝑝 (variable, type). This approach shows
that probabilistic models and static type inference can be effectively
conjoined, but lacks in its scalability potential due to the verbose
graphical model, and is limited in terms of type vocabulary.

Hellendoorn et al. [12] describe DeepTyper, the first approach
to mitigate the scalability shortcomings of previous work by taking
advantage of powerful deep neural networks, a technique that has
become the basis for SOTA models. DeepTyper is heavily inspired
by NLP solutions and treats the task of type inference as a sequence-
to-sequence generation task, where a sequence of tokens extracted
from the source code is taken as input and a sequence of types
is generated as output. DeepTyper uses a bidirectional recurrent
neural network (biRNN) architecture in which two RNNs simulta-
neously traverse the input sequence both forward and backward.
The goal is to capture large amounts of context to increase scalabil-
ity. This strategy is an improvement over prior work aimed at the
TypeScript language. However, it suffers from a phenomenon the
authors call type drift: type predictions for the same variable may
be inconsistent over multiple instances, even if the variable’s type
is fixed.

NL2Type [20] utilizes Long Short-Term Memory (LSTM) recur-
rent neural network architecture to address type inference as a
classification problem for JavaScript. The standout design choice
of this framework is the inclusion of extensive NL components
in the source code, including variable and parameter names, as
well as comments. The goal is to predict function return types. The
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appropriation of additional NL information is an effective improve-
ment over previous work, which the authors attribute to the latent
underlying connection between source code properties and docu-
mentation. However, this approach is still limited in practice by a
fixed vocabulary of only a thousand types.

TypeWriter [27] extends the deep learning formulation intro-
duced by prior work with a novel combinatorial search component
that seeks to effectively find type-correct annotations for Python
function return types and formal parameters. TypeWriter first
employs both natural language (comments, identifier names) and
contextual code (parameter usage statements) extracted from the
Abstract Syntax Tree (AST) representation of source code to train
a neural type predictor based on a hierarchical RNN (hRNN) with
two LSTM cells. Once trained, this model can produce a ranked
list of type predictions for a target type annotation. With a set of
missing type locations and their corresponding ranked predictions,
TypeWriter commences a feedback-guided search procedure to
eliminate possible inconsistencies that may arise when naively as-
signing each location independently its highest ranked prediction.
To this end, a gradual type checker is used to guide a combinatorial
search space of all possible type assignments.

LambdaNet [32] proposes an alternative representation of source
code, that more effectively leverages type-centric structure. The
input program is transformed into a type dependency graph rep-
resentation, where each variable type is encoded as a node, and
relations between types are modeled as labeled edges. The authors
used a graph neural network (GNN) to generate an embedding for
each node, which is used for type prediction. A key element of
the graph representation resides in the semantics of edges: each
edge represents either a logical or a contextual relation between the
connected variables. Logical edges impose hard constraints (such as
asserting that certain types must be functions, booleans, or objects),
while contextual edges encode helpful information extracted from
adjacent code context. Finally, a pointer network computes a distri-
bution over type assignments based on the embedding computed
by the GNN.

OptTyper [23] merges logic and learning-based techniques to
produce type-correct annotations for TypeScript. The usage of logic
constraints in OptTyper is based on a static analysis constraint
generator that calls the TypeScript compiler for a target annota-
tion and then constraints the possible type space for that target
to the disjunction of the types emitted by the compiler. This con-
trasts the LambdaNet approach, which is centered around learning
constraints, rather than imposing them on the output. OptTyper
combines the logical constraints with an LSTM-based neural predic-
tion in a continuous relaxation composite optimization framework.
This framework increasingly relaxes the logical constraints derived
from static analysis and combines themwith the natural constraints
generated by the neural network to generate a single objective func-
tion.

CodeBERT [8] is a pre-trained bimodal model for programming
languages and natural language pairs (both PL-NL and NL-PL)
trained on multiple languages. GraphCodeBERT [11] is an extension
of CodeBERT which considers the inherent structure of code by
using the data flow graph of a program. These models are gener-
ally trained on finding the semantic relations between code and
language, which they can use to infer types. Both are multi-layer

bidirectional transformer models which are used as baselines for
the CodeXGlue benchmark [15]. GraphCodeBERT outperforms all
compared models in this benchmark.

PLBART [1] is a pre-trained sequence-to-sequencemodel that uses
programming languages and their associated natural languages
text including StackOverflow posts. The authors find that their
model outperforms SOTA models for most code summarization,
generation, translation, and classification tasks. They also establish
PLBART’s effectiveness on program understanding and show that it
learns crucial program characteristics.

TypeBERT [16] is a fine-tuned model based on BERT for the type
inference task with a final type classification layer. It uses sim-
ple token-sequence embedding with a large dataset and finds that
TypeBERT outperforms SOTA models by inherently learning the
structure of the code if the dataset trained on is large enough. The
authors compose their own dataset to fulfill this data requirement.

2.2 Similarity Learning-based Approaches
Typilius [2] introduces a meta-learning strategy for type infer-
ence in Python, in which the model learns a relaxed d-dimensional
continuous representation of the search domain, called the type
space. The key advantage of this technique is that the type vocabu-
lary, in this case, the positions of individual data points in the type
space, can be effectively amended with novel type embeddings. This
enables the model to flexibly adapt to new data, in essence allowing
for an unlimited (or open) type vocabulary. At prediction time, a
point is embedded in this type space and its nearest neighbors are
used to determine the probability distribution over types, based
on distance. This approach is widely known as Deep Similarity
Learning. To realize this, the authors propose a gated graph neural
network (GGNN) architecture, trained using a triplet loss function,
which simultaneously discriminates between similar and dissimilar
types. The network inputs contain rich semantic and syntactic in-
formation extracted from raw tokens of the program, nodes of the
syntax tree, and unique symbols. The type space is represented as
a map of a sample of embeddings to which new points are mapped
before performing k-nearest neighbor (KNN) search.

HiTyper [26] seeks to bridge the gap between static inference-
and deep learning-based strategies by introducing a framework that
both guarantees type correctness of type predictions and mitigates
the inaccurate predictions of rare types that prior work suffers from.
The algorithm first infers a type dependency graph (TDG) based on
the input program, which it then uses in alternating a two-phase
process. HiTyper initially commences the forward type inference
stage by filling in the partially-inferred TDG node using static
analysis, which it prioritizes over learned annotations. For nodes
that static analysis fails to fill, HiTyper uses a similarity-based
neural recommender instead. In the second phase, the algorithm
engages a backward type rejection solution that validates neural
recommendations. This two-phase procedure repeats for nodes
whose inferred types were rejected in the latter phase until all
nodes are filled.

Type4Py [21] focuses on the type inference task for Python. The
model is a deep similarity learning-based (DSL) hierarchical net-
work, which learns to discriminate between similar and dissimilar
types by mapping the models’ output to a type cluster. This type



Table 2.1: Comparative Analysis of Prior Work

Model Year of Publication Architecture Basis Meta-Approach Type Vocabulary Size Unseen Type Support

JSNice [28] 2015 CRF Dependency Networks - ✗

Xu et al. [33] 2016 Graphical Model Belief Propagation - ✗

DeepTyper [12] 2018 biRNN Classification 11,830 ✗

NL2Type [20] 2019 LSTM Classification 1,000 ✗

TypeWriter [27] 2020 3 × RNN Classification 1.000 ✗

LambdaNet [32] 2020 GNN Pointer Network 100 ✓

OptTyper [23] 2020 LSTM Constraint Satisfaction 100 ✗

Typilus [2] 2020 GNN DSL Unbounded ✓

TypeBERT [16] 2021 Transformer Classification 40,001 ✗

HiTyper [26] 2021 NN (unspecified) DSL - ✗

Type4Py [21] 2021 2 × RNN DSL Unbounded ✗

DiverseTyper [14] 2022 Transformer DSL Unbounded ✓

TypeSpaceBert (ours) 2022 Transformer DSL Unbounded ✗*

Baseline (ours) 2022 Transformer Classificaiton 50,000 ✗

* Unseen types can be amended to the search space in a similar manner to the technique used in Typilus [2]. This is not supported in this research prototype.

cluster allows an unbounded type vocabulary. However, the authors
acknowledge that it is still restricted by the actual vocabulary of the
training dataset. The authors created a dataset ManyTypes4Python
[22], which they statically enhanced with more type annotations
using Pyre. This increases the size of the annotated dataset, which
increases the performance of the model. From this dataset, the au-
thors retrieve the natural information of identifiers, function code
context, and visible type hints, which builds a type dependency
graph recursively based on imports. Lastly, the authors argue for
the use of Mean Reciprocal Rank (MRR) as an evaluation metric,
since developers tend to only use the first suggestion from an infer-
ence tool [24]. They report that Type4Py outperforms SOTA type
inference models for Python for common types.

DiverseTyper [14] focuses on predicting user-defined types by
fine-tuning TypeBERT. It alleviates the problem of only predicting
user-defined types that exist in the training set by using the pre-
training basis, which allows the model to predict a more diverse
set of types. The model has a separate common types classification
layer to produce a single-purpose type space from user-defined
embedding. The resulting two lists of type classifications and their
probabilities (common and user-defined) are arbitrated into a final
type prediction. The authors show that their model outperforms
SOTA models for user-defined types and is able to generate user-
defined types that were unseen in the training set.

2.3 Model benchmark
CodeXGLUE [19] stands for General Language Understanding Eval-
uation benchmark for code. This benchmark provides multiple
datasets and leaderboards that rank different models per type of
code automation task. It provides three baseline models which al-
low for comparisons. CodeXGlue is extended with a type inference
task and now contains the ManyTypes4TypeScript dataset [15].
This dataset consists of JavaScript code with an annotated type
list. For this task, the baselines are compared with the measures of
Top-100 and overall scores and use the precision, recall, F1-score,
and accuracy metrics.

3 APPROACH
To build an effective type prediction algorithm for TypeScript code
with an unbounded number of possible types, we use the following
approach. First, we run the code through CodeBERT, where we fine-
tune the model in a Deep Similarity Learning (DSL) setting. The
model receives triplets of tokens and labels during training, which
it casts in a low-dimensional type space fit for clustering analysis.
After training, the type space is instantiated by recording the posi-
tions of all points in the data set, according to the model’s output.
Lastly, k-nearest neighbors search is performed in the populated
type space at inference time to determine the type of a targeted
token.

This section describes the intuition, design, and implementation
details of our approach. We first explain the baseline architecture
and its features. Next, we introduce our novel DSL-based extension.
We further detail our fine-tuning pipeline, and the inference process
carried out at prediction time. Finally, we provide a visual example
of a type space to help build intuition.

3.1 Baseline architecture
We implement our approach as an extension of CodeBERT, a bimodal
pre-trained model that captures semantic connections between NL
and PL. CodeBERT supports both understanding and generation
tasks [8]. It is pre-trained on a large, multilingual source code
corpus, utilizing both bimodal (tuples of code and corresponding
function-level documentation) and unimodal data points. The pre-
training process follows a hybrid objective function setup that
includes both Masked Language Modeling (MLM) [7] and Replaced
Token Detection (RTD) [5]. MLM leverages bimodal data by ran-
domly masking portions of both the NL and PL tokens input tuples,
with the goal of recovering the hidden tokens. RTD operates on
both unimodal and bimodal data points in a binary classification
setup that aims to discriminate between "real" and "fake" input by
generatively corrupting data at random points in the input [8].
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Figure 3.1: Simplified visualization of the neural architecture of our model.

CodeBERT uses a similar bidirectional Transformer [31] neural
architecture as its predecessors BERT [7] and RoBERTa [18], specifi-
cally following the same architecture as RoBERTa𝑏𝑎𝑠𝑒 [8]. CodeBERT
was trained on a corpus consisting of 6.4M unimodal and 2.1M bi-
modal datapoints across 6 languages, and is available in several
language-specific fine-tuned versions [8]. CodeBERT is shown to
significantly outperform its purely NL-trained counterparts in both
NL code search and documentation generation tasks across all six
programming languages. This highlights not only the effective-
ness of the Transformer-based architecture for code-related tasks
but also the powerful combination of multilingual training and
language-specific fine-tuning.

CodeBERT and GraphCodeBERT [11] display SOTA results for the
task of type prediction [15]. In our approach, we seek to further
improve the performance of CodeBERT by enriching its output with
a similarity-based clustering technique and fine-tuning the model
for the type inference task. Utilizing the pre-trained weights of
CodeBERT allows the amortization of the overall training time and
only requires fine-tuning the extended architecture on the task of
type prediction. Because CodeBERT is an encoder model, and our
extension simply casts the encoding into a lower-dimensional space,
extending the number of learned types is possible. [14]. Users can
effectively amend the type space with additional points (i.e., from
local codebases) whose coordinates in the type space are recorded
alongside their labels.

3.2 Type space extension
We extend CodeBERTwith a fully connected linear layer which casts
the type inference problem into a similarity learning framework.
More concretely, we map type prediction inputs to outputs in a
multidimensional Euclidean space, where the model learns to dis-
criminate between similar and dissimilar types based on distance.
Formally, this is an instance of a DSL task [4]. Similar approaches
have been explored in literature, with the output space referred to
as type clusters [21] or type space [2].

The DSL framework offers several crucial advantages in compar-
ison to a classification-based approach for type prediction. First, in
a classification setting (i.e., [20], [27]), a typical architectural setup

consists of one neural output head for each type in a given vocab-
ulary. At prediction time, the user runs the model forward, and
the result usually takes the form of a probability distribution con-
structed using the softmax function over the values of the output
layer. While this strategy is effective for situations with an enforced
pre-defined vocabulary, it fails to scale up to arbitrary vocabulary
sizes, and predictions that do not fit any known type are assigned
a reserved UNK label. To mitigate this issue, classification-centric
neural architectures for type prediction usually rely on large vocab-
ularies (in the range of thousands and tens of thousands) derived
from the pre-training data.

Second, classificationmodels are ineffective at adapting to changes
in vocabulary. Since the vocabulary size dictates the architecture,
changing the vocabulary requires a mirroring adaptation in the
model to accommodate new types. DSL addresses both of those
limitations. By building a Euclidean space that can contain an arbi-
trary number of clusters, DSL eliminates the scalability concerns.
Further, online predictions on new data enable amending the type
space with new clusters for previously unseen types, thus elimi-
nating the pre-set size dependency problem. Note, however, that
this does not inherently imply that DSL allows for unseen types
to be synthesized from their mapping in the cluster space (i.e., the
position of the mapping only determines the distance previously
"seen" types).

The novelty of our approach comes from enriching the pre-
trained architecture of CodeBERTwith a fine-tuned type space map-
ping layer. Unlike Type4Py [21], and Typilus [2], which also use a
type spaces with unbounded vocabularies, our approach is based
on a Transformer model rather than RNNs and GNNs, respectively.
Our approach also differs from DiverseTyper [14], which employs
TypeBERT [16], a Transformer model similar to CodeBERT, and type
spaces, in that our approach exploits the multilingual pre-training
of CodeBERT in conjunction with language-specific fine-tuning, as
opposed to a task- and language-specific pre-training procedure.

We provide a simplified visual representation of this architecture
in Figure 3.1. We provide further details on the techniques used to
process labels in Section 3.3 and explore an intuitive example of a
fully assembled type space in Section 3.5.



3.3 Fine-tuning
We reduce the complexity of the training procedure by re-utilizing
the base weights of CodeBERT. The training process consists of a
single end-to-end fine-tuning step, in which we sample the training
dataset (we provide more details about the dataset in Section 4.1) for
aligned token-type sequence pairs to learn a spacial transformation
of the input pair into the target Euclidean space. We do this by
composing triplets of data points ⟨𝑥𝑎, 𝑥𝑝 , 𝑥𝑛⟩ where each member
of the triplet is composed by (1) a contextual sequence of source
code tokens that contains a target whose type the model should
predict, and (2) a partially masked label vector of matching size,
which contains the corresponding type of each token. Untyped
tokens, such as syntactic elements or keywords are assigned a
special NULL type, which is ignored during training.

To create data points for training, we perform a series of oper-
ations on the dataset. Starting from the raw data, in which each
document is formatted as two aligned lists 𝑇 and 𝐿 that contain
sequence-aligned tokens and labels respectively, we first break the
two lists into equally sized segments. That is, for the list of tokens𝑇 ,
we generate 𝑖 sublists such that each sublist 𝑇 (𝑖 ) is created accord-
ing to Equation 3.1, ith 𝑘 the fixed size of the selected segments.

𝑇 (𝑖 ) :=
{
𝑇(𝑖−1) ·𝑘 :𝑖 ·𝑘 ,∀𝑖 ∈

{
1, ...,

⌊ | 𝑇 |
𝑘

⌋}}
(3.1)

The creation of labels lists 𝐿 (𝑖 ) is analogous and preserves align-
ment. If the last segments of the lists do not exactly match the size
𝑘 , we simply discard them, as to not introduce additional noise to
the model by altering the data or padding it. Finally, each sublist
tuple ⟨𝑇 (𝑖 ) , 𝐿 (𝑖 ) ⟩ generates 𝑙 additional tuples ⟨𝑇 (𝑖 ) , 𝐿 ( 𝑗 ) ⟩, for each
𝐿 ( 𝑗 ) belonging to the set described in Equation 3.2.

{[{
𝐿
(𝑖 )
𝑛 , if 𝑛 ≠𝑚,

mask, if 𝑛 =𝑚

]𝑘
𝑛=1

∀𝑚 ∈ {0, ..., |𝐿 (𝑖 ) |} | 𝐿 (𝑖 )𝑚 ≠ NULL
}

(3.2)

Prosaically, for each partitioned label list, we generateℎ offspring
lists, with ℎ the number of non-NULL type labels. Each of the off-
spring lists is identical to the original, except for the introduction
of a special mask at one of the𝑚 types’ positions. Each of the gen-
erated masked label lists is associated with the same original token
list, which allows for an independent inference procedure to be
carried out for each type in the token sequence. We repeat this
procedure for all documents in the training set.

The training algorithm samples the triplet dataset to select three
distinct list tuples, which are forwarded to the model to obtain
⟨𝑡𝑎, 𝑡𝑝 , 𝑡𝑛⟩. We use these values to compute the error according
to the triplet loss formula provided in Equation 3.3 (where𝑚 is a
pre-defined margin):

L(⟨𝑡𝑎, 𝑡𝑝 , 𝑡𝑛⟩,𝑚) :=𝑚𝑎𝑥{0,𝑚 + ||𝑡𝑎 − 𝑡𝑝 | |2 − ||𝑡𝑎 − 𝑡𝑛 | |2} (3.3)

Intuitively, this function reaches its optimum when the model
minimizes the difference between the anchor (or reference) point
𝑡𝑎 and a matching (positive) example 𝑡𝑝 , while simultaneously max-
imizing the difference between the anchor and a non-matching
(negative) example 𝑡𝑛 . This loss function lends itself naturally to

the task of similarity learning because of its tendency to concur-
rently incentivize both desirable properties of clustering.

3.4 Type space inference
After the fine-tuning phase, the type space is built by running the
model forward on a selected subset of inputs from the training
dataset, and the output is recorded alongside each label. In practice,
the records are pairs of 𝑑-dimensional type space mappings and
the corresponding numeric representation of the masked type. For
our implementation, we ensured that the type space is built homo-
geneously, meaning that the same network weights are used for
each prediction. We do this to encourage consistency in the type
space: as hyperparameters are learned during training, the shape
of the type space and the position of data points in it is altered. To
alleviate problems that might emerge from keeping data points that
have been mapped with older parameters, the entire type space is
built using the fully trained version of the model.

At prediction time, the model produces a 𝑑-dimensional vector
𝑥 that corresponds to the position of type 𝑡 in the type space. To
determine the probability distribution at this point, a KNN [6]
heuristic is employed. Formally, this heuristic expands a minimal
hyperspherical volume in the euclidean type space centered at 𝑥
until a set of size least 𝑘 of other points𝑌 = {𝑦𝑖∈{1..𝑛} ∈ R𝑑 , 𝑛 ≥ 𝑘}
is contained within. Each point 𝑦𝑖 is the type space mapping of
a corresponding type 𝑡 𝑗 . Let 𝑇 = {𝑡 | ∃𝑦𝑖 ∈ 𝑌, model(𝑡) = 𝑦𝑖 } be
the set of types that map onto the set of nearest neighbors. The
probability distribution is defined in terms of this set 𝑇 according
to Equation 3.4, where 𝑁 is a normalizing constant, and 𝑑 (𝑦𝑡 , 𝑦𝑖 )
measures the 𝑑-dimensional euclidean distance between the 𝑦𝑡 and
𝑦𝑖 .

𝑝 (𝑡 = 𝑡 𝑗 ∈ 𝑇 ) = 1
𝑁

∑︁
𝑦𝑖 ∈𝑌 |model(𝑡 𝑗 )=𝑦𝑖

1
𝑑 (𝑦𝑡 , 𝑦𝑖 ) + 𝜖

(3.4)

Intuitively, this computation measures probabilities as inversely
proportional to the distance between the point 𝑦𝑡 and the selected
neighbor 𝑦𝑖 . If the same type is mapped to multiple points 𝑦𝑖 , the
probabilities are simply added up across all common mappings.

For the practical implementation of the generation of the type
space and the queries using the KNN heuristic, we use the Annoy
library [3].

3.5 Example
To build intuition on the mechanisms employed in the type space,
we provide a visual example in Figure 3.2. Individual types are
represented as colored spheres, whereas two spheres that share
the same colors are representations of the same type. Types can
form homogeneous clusters, as in the case of the grey spheres, or
overlapping clusters, as in the case of the mixed blue and yellow
sphere clusters. Types can also be cast far away from any cluster
if they are dissimilar and rare, as in the case of the orange sphere.
The red sphere is selected as an example of the KNN clustering
procedure: in this case, the red volume encompasses 7 other spheres
which all share the same type: as a result, the final prediction would
be the grey type, with a probability of 1.
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overlapping clusters

homogenous cluster

single outlier type

Figure 3.2: A sample type space mapping.

Table 4.1: CodeXGlue dataset properties

Type Training Testing Validation

Projects 11.4K (81.8%) 1.3K (9.58%) 1.2K (8.62%)
Files 486K (90.16%) 28K (5.20%) 25K (4.64%)

Sequences 1.7M (91.95%) 81K (4.34%) 69K (3.71%)
Types 8.6M (95.33%) 224K(2.46%) 201K (2.21%)

4 EVALUATION SETUP
This section covers the core aspects of our empirical study and
details the rationale behind the design choices we made.

4.1 Dataset
To align our analyses with literature standards for evaluating code
intelligence tasks, we choose the ManyTypes4TypeScript [15] dataset
distributed through the CodeXGLUE challenge [19]. The dataset is
specifically aimed at TypeScript type prediction and was originally
released in 2022. It contains over 9 million type annotations across
13,953 projects and 539,571 files. The dataset is split into three par-
titions for training, validation, and testing, each containing roughly
80%, 10%, and 10% of the data, respectively. We provide a detailed
breakdown of the dataset composition in Table 4.1.

We pre-process the data to filter out all fields except for tokens
and their labels (types). Tokens are then split into batches of a
pre-defined size and provided as inputs to CodeBERT. Aligned types
are split correspondingly and given as input to the linear layer,
following the masking procedure described in Section 3.3.

4.2 Baseline
To meaningfully assess the performance of our model, we seek to
choose a fair baseline algorithm for evaluation purposes. Due to the
resource limitations, this work adheres to, comparing our model
against SOTA solutions does not provide a fair comparison because
our model has not been trained to the full extent of the dataset.
Instead, we chose to design a separate model that shares the same
architectural traits described in Section 3, but instead employs a

classification-based approach, as opposed to DSL. This baseline
allows us to accurately gauge the strengths and weaknesses of DSL
within the CodeBERT framework.

4.3 Implementation
TypeSpaceBERT implementation. To implement our approach,

we use the pre-trained CodeBERT-base model from huggingface1
and augment it with linear layer implemented in PyTorch2. We use
a similar triplet sampling strategy as the one employed in Type4Py3,
where we define a positive 𝑡𝑝 with respect to an anchor 𝑡𝑎 as any
instance of the same type, that is, 𝑡𝑎 = 𝑡𝑝 (see Section 3.3 for details).
Negative examples are sampled at random from the remaining data
points of the corpus (i.e., any type 𝑡𝑛 ≠ 𝑡𝑎).

Baseline implementation. Our baseline implementation follows
the same architecture and modules as TypeSpaceBERT, except for
the dimension of the output linear layer. In TypeSpaceBERT, the
user can define the output dimension of the model by setting a
parameter 𝑑 . The output dimension has a pre-set value of 50.000, in
accordance with the type vocabulary of the dataset. At prediction
time, the type distribution is determined by computing the softmax
function over the output neurons.

Experimentation environment. To fine-tune the model, we used
the Google Cloud Platform with one NVIDIA TITAN 4 GPU for
48 hours. This resulted in a utilization of around 2% of the dataset.
Training on the entire dataset is estimated to take between 960
and 1270 hours. The generation of the type space based on the
fine-tuned model has run for 24 hours and used around 6% of the
training data. Finally, the complete evaluation using the fine-tuned
model and the constructed type space would have taken around 5
hours. Because of this, we sample 10.8% of the test data, to perform
multiple intermediate evaluations that could capture the progress
trend of the model.

Parameter Settings. For reproducibility purposes, we provide a
full list of parameter values used for experimentation in Table 4.2.
1https://huggingface.co/microsoft/codebert-base
2https://pytorch.org/
3https://github.com/saltudelft/type4py

https://huggingface.co/microsoft/codebert-base


Table 4.2: Experimental Parameters

Parameter TypeSpaceBERT Baseline

Base Model CodeBERT CodeBERT
Context Window Size 128 8

LL Dimension 98,432 ×8 6, 272×50,000
Type Space Dimension 8 -

KNN 𝑘 10 -
Loss Function Triplet Loss Cross-Entropy Loss

We chose the context window sizes empirically based on samples
of training batches such that the models perform comparably in
terms of speed. We also set the number of nearest neighbors 𝑘 of the
inference procedure of TypeSpaceBERT to 10, as this is a common
value in literature [2, 21]. To train the models, we used the Adam
optimizer [17] with a learning rate of 0.01 and an 𝜖 value of 10−8.

4.4 Metrics
Prior work has established a wide range of evaluation metrics to
capture the performance of type appraise algorithms. Top-Xmetrics
measure the percentage of times the correct type was included in
the X most likely candidates, as predicted by the algorithm. This
metric is remarkably flexible, and variations in literature range from
Top-1 (also referred to as exact-match), which might be most mean-
ingful for developers [24] to Top-100, depending on the scope of
the experiment. The Mean Reciprocal Rank (MRR) is an alternative
to Top-X metrics that rewards matches between better-ranked rec-
ommendations and ground truth. For our evaluation, we compute
the Top-1, Top-8, and MRR@8 measures. 8 is heuristically chosen
for analysis, as we found it is the largest value for which included
types are meaningful.

Standard statistical metrics such as precision, recall, F1-score,
and accuracy are also commonplace in literature. We focus on
exact match accuracy for our evaluation, as no clear definitions
for true and false negatives have been explored in prior literature,
rendering these metrics unreliable. We further note that since the
type vocabulary of our dataset does not contain nested types (such
as Array<number>), the Base Exact Match (BEM) metric is not of
concern.

Literature distinguishes between different categories of types
based on frequency and composition. Often, types are classified
into ubiquitous, common, and rare types based on frequency; and
base, user-defined, and nested types based on composition. Due to
complexity and time constraints, this distinction is not analyzed
for this research and is instead recommended for future work to
give a broader evaluation of our results.

5 EVALUATION
This section presents the evaluation of the performance of our
model. To assess the effectiveness of TypeSpaceBERT, we focus on
evaluating the following research questions:

RQ1. How effective is TypeSpaceBERT at the task of type predic-
tion?

RQ2. How do the size and training time of TypeSpaceBERT scale?

5.1 Type Prediction Effectiveness (RQ1)
Table 5.1 displays the Top-1, Top-8, and MRR@8 scores of our
model and the classification baseline model over 41,000 training
data samples. In Figure 5.1, Figure 5.2, and Figure 5.3, we show
the performance of TypeSpaceBERT plotted over the number of
training examples the model used.

The results in Table 5.1 indicate that TypeSpaceBERT outper-
forms the baseline by factors of 3.78 and 1.66 for Top-8 and MRR@8,
respectively, suggesting the superiority of our model in environ-
ments in which the amount training data is limited. The Top-8
results shown in Figure 5.1 remain constant over all intermediate
models compared. We hypothesise that the cause of this is the
scarcely populated type space, which was generated using only
6% of the train set. This sparse type space may contain a strongly
skewed topology, possibly revolving around several prominent
clusters which dominate their counterparts at prediction time. We
expect that increasing the amount of data used to construct the
type space would mitigate this problem and, in turn, produce more
meaningful results.

In contrast, the Top-1 and MRR@8 results displayed in Figure 5.2
and Figure 5.3 show a more dynamic behavior over the different
models. The Top-1 score ranges between 0.024 and 0.033, while the
MRR@8 varies between 0.106 and 0.113. Moreover, the trend lines
reveal that for both metrics, the performance is increasing with the
amount of training data, which suggests the potential viability of
the model in a more general scenario. We suspect that the erratic
instability which occurs between 0 and 10,000 iterations is caused
by the relatively small amount of data used for the fine-tuning
procedure. Due to TypeSpaceBERT’s inability to predict types which
it has not seen during fine-tuning, a small training set directly
hinders the model’s performance on the test data. As such, we
would expect that the stability of the performance metrics would
increase with the size of the train set.

The amount of training data leveraged in this work is severely
limited by the constraints of this study. This likely causes our ap-
proach to drastically under-perform, and therefore, the results
are not necessarily a reflection of the model’s true capabilities
but rather an indication of its potential. Despite these limitations,
TypeSpaceBERTmanages to predict a small subset of types without
extensive training and outperforms the classification baseline on
the Top-8 and MRR@8 metrics, which lightly suggests effective-
ness. DiverseTyper [14], an architecturally similar approach, has
a more complex network and performs better, however, our model
shows potential to utilize its own multi-lingual pre-trained basis to
perform comparatively when fully trained. Nevertheless, drawing
an exhaustive conclusion requires further research.

RQ1: TypeSpaceBERT has low exact match accuracy due to lim-
ited training data. However, it outperforms the classification base-
line by a factor of 3.78 and 1.66 for Top-8 and MRR@8, respec-
tively. Our model shows an increasing trend in accuracy, which
suggests better performance when fully trained.

5.2 Size and Train Time Scalability (RQ2)
To compare the size of the models, we focus on the dimension of the
appended linear layer (LL). In our implementation, the LL takes as
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Table 5.1: Accuracy Results

Model Top-1 Top-8 MRR@8

TypeSpaceBERT 0.032 0.257 0.113
baseline - 0.0680 0.0681

Figure 5.1: TypeSpaceBERT Accuracy Top-8

Figure 5.2: TypeSpaceBERT Accuracy Top-1 with trend line

Figure 5.3: TypeSpaceBERT Accuracy MRR-8 with trend line

input the hidden state vector of CodeBERT over the embedded token
input sequence. Given a window dimension 𝑘 , the input of the LL
is 𝑘 · 768, as per CodeBERT’s architecture. This value is essential
for scalability purposes because given a type space dimensionality
𝑑 and a vocabulary size 𝑣 , the LL of a classification model has an
equal number of connections between input and output neurons
compared to DSL counterpart iff 𝑘classification =

𝑘DSL
𝑑

· 𝑣 . In practice,
this means the number of connections is expected to change by a
factor of 𝑣

𝑑
when changing from a DSL approach to a classification

approach. The dataset used in our experiments contains a vocabu-
lary of size 50,000, and given that DSL approaches generally employ
much smaller spacial dimensions (8, in our case), we hypothesise
that TypeSpaceBERT’s scalability is strongly preferable terms of
both size and training time in comparison to the baseline.

5.2.1 Size Scalability. We set the window size and type space di-
mensionality of TypeSpaceBERT to 128 and 8, respectively. To find
an appropriate window size for our baseline, we repeatedly halved
the window size of the classification model until we obtained com-
parable results on small-scale datasets. We settled on a window size
of 8 as it was the largest window we could obtain without compro-
mising either the training procedure due to memory limitations or
the inference performance due to an overly narrowed context. We
provide comparative measurements for both cached model sizes
and estimated memory occupation during training in Table 5.2.

The results indicate that our DSL approach scales much better
than the baseline. The average disc memory requirement for storing
a partially trained TypeSpaceBERT model is 478.49MB, compared
to 1.64 GB for the baseline. This shows a decrease by a factor
of 3.44 and is consistent with our expectations, given the much
higher number of neural connections in the LL (ca. 313 · 106 for
the baseline compared to ca. 787 · 103 for the DSL approach). The
smaller memory requirements make our model easier to deploy
in practice and provide more flexibility with regard to window
size. For the baseline to integrate a context window size as large
as TypeSpaceBERT, the output layer would have to be 4 orders
of magnitude larger, making training cumbersome and resource
intensive.

5.2.2 Train Time Scalability. Wemeasure train time performance in
terms of the mean number of training iterations per hour performed
by each model. The comparison employs the same data for both
models, however, loss functions are different: TypeSpaceBERT is
trained via the triplet loss function, which requires three samples to
be run through the model at each step, while the baseline is trained
using the cross-entropy loss, which only requires one data point.
We provide approximate results in Table 5.2.

On average, TypeSpaceBERT performs 3,167 iterations per hour,
compared to the baseline’s 200. This implies that despite requiring
three times as many samples to train at each step, the whole train-
ing pipeline for TypeSpaceBERT would complete 15.8 times faster
than the classification-based alternative. We attribute this impact-
ful difference to the heavy computational constraints imposed by
the introduction of the 50,000 output neurons in the baseline. We
note that the training procedure for TypeSpaceBERT also requires
the creation of the type space by running the model forward one
more time through the dataset. This requirement does, however,



Table 5.2: Scalability Results

Metric TypeSpaceBERT Baseline

Mean Size when Cached 478.59MB 1649.18MB
Estimated Mean Memory Occupation 11.9GB 33.1GB

Number of Iterations Per Hour 3,167 200

not massively impact the difference between the approaches, as in
this latter step (i) does not require three different samples at each
step, as in the training, and (ii) does not include any gradient or
loss computation.

RQ2: Despite having a context window size 16 times larger than
the baseline, sampling 3 distinct points at each iteration during
training, and requiring the subsequent creation of a type space,
TypeSpaceBERT scales significantly better than the baseline in
terms of both memory requirements and train time.

6 THREATS TO VALIDITY
Threats to internal validity concern factors that might discredit or
invalidate the credibility of our conclusions. Concretely, we faced
two significant setbacks in this regard: (i) choosing a fair baseline
to compare our findings against, and (ii) obtaining a sufficient num-
ber of samples to draw statistically robust conclusions about the
features of our approach. We addressed the former by developing a
"twin" architecture (see Section 4.3 for details) that shares the same
data flow, but utilizes different output layers and inference proce-
dures. This allows us to comparatively gauge the effectiveness of
the DSL extension in a fair empirical manner. We addressed the lat-
ter concern by training the models as much as we could within the
constraints of this work. To address both concerns, we recommend
fully fine-tuning TypeSpaceBERT on the entire training dataset and
comparing the results against current SOTA models. Statistical ro-
bustness can be attained by the computation of statistical tests over
multiple instances (such as the Wilcoxon signed-rank test or the
Vargha-Delaney effect size test [30]).

Threats to external validity concern factors that might negatively
impact the generalizability of our approach. The quality of our
fine-tuned model is heavily reliant on the fine-tuning data. The
ManyTypes4TypeScript dataset (see Section 4.1 for details) helps
mitigate this concern in two ways. First, the sheer size of the dataset
(which ca. 10 times larger than an equivalent Python dataset [15])
helps generalize the learned patterns over a large corpus of projects
and files, as demonstrated in TypeBERT [16]. Second, the breadth
of the type vocabulary of 50,000 types is far greater than that of
datasets used in many prior works. For instance, DeepTyper’s vo-
cabulary is limited to 1000 types [12]. Utilizing this dataset to its
full potential would be the most effective way to increase the ro-
bustness of our model over unseen TypeScript data. However, due
to the circumstances described in the previous paragraph, this was
not possible, and generalizability remains a concern for our results.
Finally, an ablation study that scrutinizes the individual effects of
TypeSpaceBERT components (i.e., the type space mapping, the dis-
tance heuristic, and the KNN inference procedure) on the overall
performance of the algorithm would help cement the extent of our

contribution. The same limitations prevented us from carrying out
this study.

Threats to reproducibility regard factors that might call into ques-
tion the reliability of our study and analysis methods. To enable
reproducibility, we (i) provide an open-source implementation of
our model and baseline as a supplement to this work, (ii) provide ex-
tensive mathematical and intuitive explanations of our methods and
the rationale behind our design choices that enable practitioners to
understand and modify our algorithm (see Section 3), and (iii) we
provide the values for all hyperparameters used in experimentation
in Table 4.2 to enable convenient replication of our experiments.

7 DISCUSSION & FUTUREWORK
The main limitation of this study is the use of a small dataset for
fine-tuning, as a result of the limited amount of resources allotted
to this research. Due to a complex and lengthy development period,
there was not enough time to fully fine-tune our extension. This
means that the type space mapping is not fully optimized and might
be skewed, resulting in lower performance. In addition, having
trained the model only on a small subset of available data means
that there are likely many types on which it has never been trained.
This means that predicting those labels in practice is impossible
without further training. Our recommendation, therefore, is to
optimize the model with accelerators to reduce training time and
fine-tune the model with the complete dataset for more accurate
results. Enhanced performance can also be attained by tuning the
hyperparameters listed in Table 4.2 to better fit the data.

After inspecting the tokenized input sequence, we observed
that the tokenizer was not fully trained on the type prediction
dataset. As a result, some variables were parsed into multiple tokens.
To alleviate this problem, we would need to retrain the tokenizer
and, respectively, the CodeBERT model, which time did not allow.
However, the type label would still exist at the first token of the
typed identifier, while the rest would be part of the code context.
Therefore this should not have a significant impact on performance.

We note that our model could be deployed in a tool that devel-
opers use to gather more specific examples. These examples would
allow to improve the online project-specific performance of our
approach thanks to better quality data. This could alleviate some
of the problems of low-frequency occurring types and increase per-
formance on them. Although our model should already be capable
of synthesizing unseen types better due to the use of CodeBERT’s
general language understanding, the model likely would still fall
short in rare types. The flexible DSL architecture allows for the type
space to be partially amended at any time, which could significantly
enhance the accuracy of the model on unseen types.

7.1 Possible Extensions
The flexibility of our approach and implementation facilitates the
extension of TypeSpaceBERT with several components that could
better capture semantic information about the target program. This
section explores 2 such extensions and provides guidelines and
recommendations for implementation.

More precise code context. In our work, the tokens fed to the
CodeBERT module consist of a fixed-size window that contains the
target of the type inference task. The position of the target during
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training is not fixed, rather, the target can be at any position in
the token sequence. We do this to amortize training and dataset
processing time. However, this partly comes at the cost of accu-
racy. To improve accuracy, one can leverage the AST representation
of the target program and extract only expressions that are rele-
vant to the specific type prediction instance. Ablation studies from
previous work have shown that enriching the model with AST
information can be beneficial to prediction accuracy [2, 21]. An
interesting research question in this regard is how such additional
information can be used to lower the window size parameter of
the model, while still retaining comparable performance (i.e., how
much more valuable AST information is in comparison to syntacti-
cally close context). Note, however, that such an approach would
require additional training for AST-related components.

Alternative inference heuristics. Our model uses KNN search at
prediction time to determine the probability of a mapping belong-
ing to each type in the Euclidean neighborhood. To the best of
our knowledge, all previous work regarding DSL type prediction
follows this heuristic. The main advantage of KNN is its ability to
effectively extract information from the local topology of the space,
however, it neglects possibly informative structural hierarchies that
may emerge in the type space. To this end, we hypothesise that a
hybrid approach, which combines KNN search and dendrograms
(branching diagrams that capture relationships of similarity within
data), might be an effective alternative. Such an inference algo-
rithm would commence in two phases. First, KNN search selects
the points within a hyperspherical subvolume around the predicted
type mapping to express part of the hierarchy of the entire space.
Second, a dendrogram is constructed using hierarchical agglom-
erative clustering (HAC) from those points until the insertion of
the target mapping. The probability distribution over types is then
determined by traversing the dendrogram structure downwards
from the insertion of the target. Such an approach presents many
design choices. How HAC proceeds, whether to continue the con-
struction of the dendrogram past the insertion point to capture
more detail and how to compute the probability distribution based
on the aggregated points are all interesting design opportunities
for such a method. We believe that this technique could provide an
appealing trade-off between the exploitation of the local structure
that KNN offers and the detailed distribution that aggregating all
points in the search space allows for.

8 CONCLUSION
We introduce TypeSpaceBERT, a fine-tuned neural type prediction
model that utilizes deep similarity learning to map aligned inputs
of tokenized source code and corresponding types to create a Eu-
clidean space populated by type mappings. TypeSpaceBERT uses
CodeBERT’s pre-trained weights and architecture for initialization
and extends the base model with a linear layer that is specifically
fine-tuned for the type prediction task. We fine-tune our model
on a portion of the ManyTypes4TypeScript dataset and empiri-
cally compare its accuracy against a classification-based extension
of CodeBERT, comparing their type prediction performance and
scalability capacities. We find that with limited training, our ap-
proach shows a promising learning curve concerning the MRR@8
and Top-8 metrics, also significantly outperforming the baseline

in these circumstances. In addition, we find that TypeSpaceBERT
scales considerably better than the classification-based counterpart
both in terms of model size and training time.
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